AM29DL323DB-120EI Spansion Inc., AM29DL323DB-120EI Datasheet - Page 3

no-image

AM29DL323DB-120EI

Manufacturer Part Number
AM29DL323DB-120EI
Description
Manufacturer
Spansion Inc.
Datasheet

Specifications of AM29DL323DB-120EI

Cell Type
NOR
Density
32Mb
Access Time (max)
120ns
Interface Type
Parallel
Boot Type
Bottom
Address Bus
22/21Bit
Operating Supply Voltage (typ)
3.3V
Operating Temp Range
-40C to 85C
Package Type
TSOP
Program/erase Volt (typ)
3/8.5 to 9.5V
Sync/async
Asynchronous
Operating Temperature Classification
Industrial
Operating Supply Voltage (min)
2.7V
Operating Supply Voltage (max)
3.6V
Word Size
8/16Bit
Number Of Words
4M/2M
Supply Current
16mA
Mounting
Surface Mount
Pin Count
48
Lead Free Status / Rohs Status
Not Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
AM29DL323DB-120EI
Manufacturer:
AMD
Quantity:
20 000
GENERAL DESCRIPTION
The Am29DL322D/323D/324D family consists of
32 megabit, 3.0 volt-only flash memory devices, orga-
nized as 2,097,152 words of 16 bits each or 4,194,304
bytes of 8 bits each. Word mode data appears on
DQ0–DQ15; byte mode data appears on DQ0–DQ7.
The device is designed to be programmed in-system
with the standard 3.0 volt V
programmed in standard EPROM programmers.
The devices are available with an access time of 70,
90 or 120 ns. The devices are offered in 48-pin TSOP
and 63-ball FBGA packages. Standard control
pins—chip enable (CE#), write enable (WE#), and out-
put enable (OE#)—control normal read and write
operations, and avoid bus contention issues.
The devices requires only a single 3.0 volt power
supply for both read and write functions. Internally
generated and regulated voltages are provided for the
program and erase operations.
Simultaneous Read/Write Operations with
Zero Latency
The Simultaneous Read/Write architecture provides
simultaneous operation by dividing the memory
space into two banks. The device can improve overall
system performance by allowing a host system to pro-
gram or erase in one bank, then immediately and
simultaneously read from the other bank, with zero la-
tency. This releases the system from waiting for the
completion of program or erase operations.
The Am29DL32xD device family uses multiple bank
architectures to provide flexibility for different applica-
tions. Three devices are available with the following
bank sizes:
Am29DL322D/323D/324D Features
The
capable of being permanently locked by AMD or cus-
t o m e r s . T h e S e c S i I n d i c a t o r B i t ( D Q 7 ) i s
permanently set to a 1 if the part is factory locked,
and set to a 0 if customer lockable. This way, cus-
tomer lockable parts can never be used to replace a
factory locked part. Current version of device has 64
Kbytes; future versions will have only 256 bytes.
This should be considered during system design.
Factory locked parts provide several options. The
SecSi Sector may store a secure, random 16 byte
ESN (Electronic Serial Number), customer code (pro-
grammed through AMD’s ExpressFlash service), or
both. Customer Lockable parts may utilize the SecSi
2
Device
DL322
DL323
DL324
SecSi
TM
(Secured Silicon) Sector
Bank 1
16
4
8
CC
supply, and can also be
is an extra sector
Bank 2
28
24
16
Am29DL322D/323D/324D
Sector as bonus space, reading and writing like any
other flash sector, or may permanently lock their own
code there.
DMS (Data Management Software) allows systems
to easily take advantage of the advanced architecture
of the simultaneous read/write product line by allowing
removal of EEPROM devices. DMS will also allow the
system software to be simplified, as it will perform all
functions necessary to modify data in file structures,
as opposed to single-byte modifications. To write or
update a particular piece of data (a phone number or
configuration data, for example), the user only needs
to state which piece of data is to be updated, and
where the updated data is located in the system. This
i s a n a d va n t a g e c o m p a r e d t o s y s t e m s w h e r e
user-written software must keep track of the old data
location, status, logical to physical translation of the
data onto the Flash memory device (or memory de-
vices), and more. Using DMS, user-written software
does not need to interface with the Flash memory di-
rectly. Instead, the user's software accesses the Flash
memory by calling one of only six functions. AMD pro-
vides this software to simplify system design and
software integration efforts.
The device offers complete compatibility with the
JEDEC single-power-supply Flash command set
standard. Commands are written to the command
register using standard microprocessor write timings.
Reading data out of the device is similar to reading
from other Flash or EPROM devices.
The host system can detect whether a program or
erase operation is complete by using the device sta-
tus bits: RY/BY# pin, DQ7 (Data# Polling) and
DQ6/DQ2 (toggle bits). After a program or erase cycle
has been completed, the device automatically returns
to the read mode.
The sector erase architecture allows memory sec-
tors to be erased and reprogrammed without affecting
the data contents of other sectors. The device is fully
erased when shipped from the factory.
Hardware data protection measures include a low
V
tions during power transitions. The hardware sector
protection feature disables both program and erase
operations in any combination of the sectors of mem-
o r y. T h i s c a n b e a c h i ev e d i n - s y s t e m o r v i a
programming equipment.
The device offers two power-saving features. When
addresses have been stable for a specified amount of
time, the device enters the automatic sleep mode.
The system can also place the device into the
standby mode. Power consumption is greatly re-
duced in both modes.
CC
detector that automatically inhibits write opera-
December 13, 2005

Related parts for AM29DL323DB-120EI