ADN2850BCP250 Analog Devices Inc, ADN2850BCP250 Datasheet - Page 13

IC DGTL RHEO DL 1024POS 16LFCSP

ADN2850BCP250

Manufacturer Part Number
ADN2850BCP250
Description
IC DGTL RHEO DL 1024POS 16LFCSP
Manufacturer
Analog Devices Inc
Datasheets

Specifications of ADN2850BCP250

Taps
1024
Resistance (ohms)
250K
Number Of Circuits
2
Temperature Coefficient
35 ppm/°C Typical
Memory Type
Non-Volatile
Interface
4-Wire SPI Serial
Voltage - Supply
3 V ~ 5.5 V, ±2.25 V ~ 2.75 V
Operating Temperature
-40°C ~ 85°C
Mounting Type
Surface Mount
Package / Case
16-LFCSP
Resistance In Ohms
250K
Number Of Elements
2
# Of Taps
1024
Resistance (max)
250KOhm
Power Supply Requirement
Single/Dual
Interface Type
Serial (4-Wire/SPI)
Single Supply Voltage (typ)
5V
Dual Supply Voltage (typ)
±2.5V
Single Supply Voltage (min)
3V
Single Supply Voltage (max)
5.5V
Dual Supply Voltage (min)
±2.25V
Dual Supply Voltage (max)
±2.75V
Operating Temp Range
-40C to 85C
Operating Temperature Classification
Industrial
Mounting
Surface Mount
Pin Count
16
Lead Free Status / RoHS Status
Contains lead / RoHS non-compliant
For Use With
EVAL-ADN2850-25EBZ - BOARD EVALUATION FOR ADN2850-25
Lead Free Status / RoHS Status
Not Compliant, Contains lead / RoHS non-compliant
THEORY OF OPERATION
The ADN2850 digital programmable resistor is designed to
operate as a true variable resistor. The resistor wiper position is
determined by the RDAC register contents. The RDAC register
acts as a scratchpad register, allowing unlimited changes of
resistance settings. The scratchpad register can be programmed
with any position setting using the standard SPI serial interface by
loading the 24-bit data-word. In the format of the data-word, the
first four bits are commands, the following four bits are addresses,
and the last 16 bits are data. When a specified value is set, this
value can be stored in a corresponding EEMEM register. During
subsequent power-ups, the wiper setting is automatically loaded to
that value.
Storing data to the EEMEM register takes about 15ms and
consumes approximately 2 mA. During this time, the shift
register is locked, preventing any changes from taking place.
The RDY pin pulses low to indicate the completion of this
EEMEM storage. There are also 13 addresses with two bytes
each of user-defined data that can be stored in the EEMEM
register from Address 2 to Address 14.
The following instructions facilitate the programming needs of
the user (see Table 8 for details):
0.
1.
2.
3.
4.
5.
6.
7.
8.
9.
10. Read RDAC wiper setting from SDO.
11. Write data to RDAC.
12. Increment by 6 dB.
13. Increment all by 6 dB.
14. Increment by one step.
15. Increment all by one step.
Table 14 to Table 20 provide programming examples that use
some of these commands.
Do nothing.
Restore EEMEM content to RDAC.
Store RDAC setting to EEMEM.
Store RDAC setting or user data to EEMEM.
Decrement by 6 dB.
Decrement all by 6 dB.
Decrement by one step.
Decrement all by one step.
Reset EEMEM content to RDAC.
Read EEMEM content from SDO.
Rev. C | Page 13 of 28
SCRATCHPAD AND EEMEM PROGRAMMING
The scratchpad RDAC register directly controls the position of
the digital resistor wiper. For example, when the scratchpad register
is loaded with all 0s, the wiper is connected to Terminal B of the
variable resistor. The scratchpad register is a standard logic
register with no restriction on the number of changes allowed,
but the EEMEM registers have a program erase/write cycle
limitation.
BASIC OPERATION
The basic mode of setting the variable resistor wiper position
(programming the scratchpad register) is accomplished by
loading the serial data input register with Instruction 11 (0xB),
Address 0, and the desired wiper position data. When the proper
wiper position is determined, the user can load the serial data
input register with Instruction 2 (0x2), which stores the wiper
position data in the EEMEM register. After 15 ms, the wiper
position is permanently stored in nonvolatile memory.
Table 6 provides a programming example listing the sequence of
the serial data input (SDI) words with the serial data output
appearing at the SDO pin in hexadecimal format.
Table 6. Write and Store RDAC Settings to EEMEM Registers
SDI
0xB00100
0x20XXXX
0xB10200
0x21XXXX
At system power-on, the scratchpad register is automatically
refreshed with the value previously stored in the corresponding
EEMEM register. The factory-preset EEMEM value is midscale.
The scratchpad register can also be refreshed with the contents
of the EEMEM register in three different ways. First, executing
Instruction 1 (0x1) restores the corresponding EEMEM value.
Second, executing Instruction 8 (0x8) resets the EEMEM values
of both channels. Finally, pulsing the PR pin refreshes both
EEMEM settings. Operating the hardware control PR function
requires a complete pulse signal. When PR goes low, the internal
logic sets the wiper at midscale. The EEMEM value is not
loaded until PR returns high.
0xXXXXXX
0xB00100
0x20XXXX
0xB10200
SDO
Action
Writes data 0x100 to the RDAC1 register,
Wiper W1 moves to 1/4 full-scale position.
Stores RDAC1 register content into the
EEMEM1 register.
Writes Data 0x200 to the RDAC2 register,
Wiper W2 moves to 1/2 full-scale position.
Stores RDAC2 register contents into the
EEMEM2 register.
ADN2850

Related parts for ADN2850BCP250