AD7853LARSZ Analog Devices Inc, AD7853LARSZ Datasheet - Page 8

IC ADC 12BIT SRL 200KSPS 24SSOP

AD7853LARSZ

Manufacturer Part Number
AD7853LARSZ
Description
IC ADC 12BIT SRL 200KSPS 24SSOP
Manufacturer
Analog Devices Inc
Datasheet

Specifications of AD7853LARSZ

Data Interface
8051, QSPI™, Serial, SPI™ µP
Number Of Bits
12
Sampling Rate (per Second)
100k
Number Of Converters
2
Power Dissipation (max)
33mW
Voltage Supply Source
Analog and Digital
Operating Temperature
-40°C ~ 85°C
Mounting Type
Surface Mount
Package / Case
24-SSOP (0.200", 5.30mm Width)
Resolution (bits)
12bit
Sampling Rate
100kSPS
Input Channel Type
Single Ended
Supply Voltage Range - Analog
3V To 5.5V
Supply Voltage Range - Digital
3V To 5.5V
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
AD7853/AD7853L
TERMINOLOGY
Integral Nonlinearity
This is the maximum deviation from a straight line passing
through the endpoints of the ADC transfer function. The end-
points of the transfer function are zero scale, a point 1/2 LSB
below the first code transition, and full scale, a point 1/2 LSB
above the last code transition.
Differential Nonlinearity
This is the difference between the measured and the ideal 1 LSB
change between any two adjacent codes in the ADC.
Total Unadjusted Error
This is the deviation of the actual code from the ideal code
taking all errors into account (Gain, Offset, Integral Nonlinearity,
and other errors) at any point along the transfer function.
Unipolar Offset Error
This is the deviation of the first code transition (00 . . . 000 to
00 . . . 001) from the ideal AIN(+) voltage (AIN(–) + 1/2 LSB)
when operating in the unipolar mode.
Positive Full-Scale Error
This applies to the unipolar and bipolar modes and is the devia-
tion of the last code transition from the ideal AIN(+) voltage
(AIN(–) + Full Scale – 1.5 LSB) after the offset error has been
adjusted out.
Negative Full-Scale Error
This applies to the bipolar mode only and is the deviation of the
first code transition (10 . . . 000 to 10 . . . 001) from the ideal
AIN(+) voltage (AIN(–) – V
Bipolar Zero Error
This is the deviation of the midscale transition (all 1s to all 0s)
from the ideal AIN(+) voltage (AIN(–) – 1/2 LSB).
Track/Hold Acquisition Time
The track/hold amplifier returns into track mode and the end of
conversion. Track/Hold acquisition time is the time required for
the output of the track/hold amplifier to reach its final value,
within 1/2 LSB, after the end of conversion.
Signal to (Noise + Distortion) Ratio
This is the measured ratio of signal to (noise + distortion) at the
output of the A/D converter. The signal is the rms amplitude of
the fundamental. Noise is the sum of all nonfundamental sig-
nals up to half the sampling frequency (f
ratio is dependent on the number of quantization levels in the
digitization process; the more levels, the smaller the quantiza-
tion noise. The theoretical signal to (noise + distortion) ratio for
an ideal N-bit converter with a sine wave input is given by:
Thus for a 12-bit converter, this is 74 dB.
Signal to (Noise + Distortion) = (6.02 N +1.76) dB
REF
/2 + 0.5 LSB).
S
/2), excluding dc. The
–8–
Total Harmonic Distortion
Total harmonic distortion (THD) is the ratio of the rms sum of
harmonics to the fundamental. For the AD7853/AD7853L, it is
defined as:
where V
V
sixth harmonics.
Peak Harmonic or Spurious Noise
Peak harmonic or spurious noise is defined as the ratio of the
rms value of the next largest component in the ADC output
spectrum (up to f
fundamental. Normally, the value of this specification is deter-
mined by the largest harmonic in the spectrum, but for parts
where the harmonics are buried in the noise floor, it will be a
noise peak.
Intermodulation Distortion
With inputs consisting of sine waves at two frequencies, fa and
fb, any active device with nonlinearities will create distortion
products at sum and difference frequencies of mfa
m, n = 0, 1, 2, 3, etc. Intermodulation distortion terms are
those for which neither m nor n are equal to zero. For example,
the second order terms include (fa + fb) and (fa – fb), while the
third order terms include (2fa + fb), (2fa – fb), (fa + 2fb) and
(fa – 2fb).
Testing is performed using the CCIF standard where two input
frequencies near the top end of the input bandwidth are used. In
this case, the second order terms are usually distanced in fre-
quency from the original sine waves while the third order terms
are usually at a frequency close to the input frequencies. As a
result, the second and third order terms are specified separately.
The calculation of the intermodulation distortion is as per the
THD specification where it is the ratio of the rms sum of the
individual distortion products to the rms amplitude of the sum
of the fundamentals expressed in dBs.
4
, V
THD (dB) 20 log
5
and V
1
is the rms amplitude of the fundamental and V
6
are the rms amplitudes of the second through the
S
/2 and excluding dc) to the rms value of the
(V
2
2
V
3
2
V
V
1
4
2
V
5
2
nfb where
V
6
2
2
REV. B
, V
)
3
,

Related parts for AD7853LARSZ