A1222EUA-T Allegro Microsystems Inc, A1222EUA-T Datasheet - Page 12

IC HALL EFFECT LATCH 3-SIP

A1222EUA-T

Manufacturer Part Number
A1222EUA-T
Description
IC HALL EFFECT LATCH 3-SIP
Manufacturer
Allegro Microsystems Inc
Type
Bipolar Latchr
Datasheet

Specifications of A1222EUA-T

Sensing Range
150G Trip, 150G Release
Voltage - Supply
3 V ~ 24 V
Current - Supply
4mA
Current - Output (max)
25mA
Output Type
Digital, Open Drain
Features
Regulated Voltage
Operating Temperature
-40°C ~ 85°C
Package / Case
3-SIP
Hall Effect Type
Latch
Output Current
25mA
Sensor Case Style
SIP
No. Of Pins
3
Supply Voltage Range
3V To 24V
Operating Temperature Range
-40°C To +85°C
Svhc
No SVHC (15-Dec-2010)
Rohs Compliant
Yes
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
A1220, A1221,
A1222, and A1223
Power Derating
The device must be operated below the maximum junction
temperature of the device, T
peak conditions, reliable operation may require derating supplied
power or improving the heat dissipation properties of the appli-
cation. This section presents a procedure for correlating factors
affecting operating T
Allegro MicroSystems website.)
The Package Thermal Resistance, R
marizing the ability of the application and the device to dissipate
heat from the junction (die), through all paths to the ambient air.
Its primary component is the Effective Thermal Conductivity, K,
of the printed circuit board, including adjacent devices and traces.
Radiation from the die through the device case, R
small component of R
motion are significant external factors, damped by overmolding.
The effect of varying power levels (Power Dissipation, P
be estimated. The following formulas represent the fundamental
relationships used to estimate T
For example, given common conditions such as: T
V
CC
T = P
T = P
= 12 V, I
T
P
D
J
= T
= V
A
D
CC
+ T = 25°C + 3°C = 28°C
×
CC
×
R
= 1.6 mA, and R
I
JA
CC
P
T
D
J
J
= 12 V
= 19 mW
. (Thermal data is also available on the
JA
= T
= V
. Ambient air temperature, T
A
D
IN
+ ΔT
×
J(max)
×
×
R
×
1.6 mA = 19 mW
J
I
JA
, at P
IN
. Under certain combinations of
JA
165 °C/W = 3°C
Chopper Stabilized Precision Hall Effect Latches
JA
= 165 °C/W, then:
D
.
, is a figure of merit sum-
(1)
(2)
(3)
JC
A
= 25°C,
, is relatively
A
, and air
D
), can
A worst-case estimate, P
able power level (V
at a selected R
Example: Reliability for V
minimum-K PCB.
Observe the worst-case ratings for the device, specifically:
R
I
Calculate the maximum allowable power level, P
invert equation 3:
This provides the allowable increase to T
power dissipation. Then, invert equation 2:
P
Finally, invert equation 1 with respect to voltage:
The result indicates that, at T
dissipate adequate amounts of heat at voltages ≤V
Compare V
able operation between V
R
and V
CC
JA
JA
V
T
(max) = 4 mA.
D
CC(est)
. If V
= 228°C/W, T
(max) = T
CC
max
(max) is reliable under these conditions.
= T
= P
CC(est)
CC(est)
J
D
(max) – T
JA
(max) ÷ I
max
≥ V
and T
to V
J
(max) = 165°C, V
CC(max)
÷ R
CC
CC
(max), then operation between V
A
JA
A
CC
D(max)
(max). If V
.
CC(est)
= 165 °C – 150 °C = 15 °C
CC
, I
(max) = 66 mW ÷ 4 mA = 16.4 V
= 15°C ÷ 228 °C/W = 66 mW
115 Northeast Cutoff
1.508.853.5000; www.allegromicro.com
Allegro MicroSystems, Inc.
Worcester, Massachusetts 01615-0036 U.S.A.
CC(max)
A
at T
, the application and device can
, represents the maximum allow-
and V
A
= 150°C, package LH, using a
), without exceeding T
CC(est)
CC
CC
(max) = 24 V, and
(max) requires enhanced
J
resulting from internal
≤ V
CC
(max), then reli-
D
CC(est)
(max). First,
.
CC(est)
J(max)
12
,

Related parts for A1222EUA-T