ATMEGA162-16PJ Atmel, ATMEGA162-16PJ Datasheet - Page 87

IC MCU AVR 16K 5V 16MHZ 40-DIP

ATMEGA162-16PJ

Manufacturer Part Number
ATMEGA162-16PJ
Description
IC MCU AVR 16K 5V 16MHZ 40-DIP
Manufacturer
Atmel
Series
AVR® ATmegar
Datasheets

Specifications of ATMEGA162-16PJ

Core Processor
AVR
Core Size
8-Bit
Speed
16MHz
Connectivity
EBI/EMI, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, POR, PWM, WDT
Number Of I /o
35
Program Memory Size
16KB (8K x 16)
Program Memory Type
FLASH
Eeprom Size
512 x 8
Ram Size
1K x 8
Voltage - Supply (vcc/vdd)
2.7 V ~ 5.5 V
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
40-DIP (0.600", 15.24mm)
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Data Converters
-
General Interrupt Flag
Register – GIFR
2513K–AVR–07/09
• Bit 7 – INTF1: External Interrupt Flag 1
When an edge or logic change on the INT1 pin triggers an interrupt request, INTF1 becomes set
(one). If the I-bit in SREG and the INT1 bit in GICR are set (one), the MCU will jump to the corre-
sponding Interrupt Vector. The flag is cleared when the interrupt routine is executed.
Alternatively, the flag can be cleared by writing a logical one to it. This flag is always cleared
when INT1 is configured as a level interrupt.
• Bit 6 – INTF0: External Interrupt Flag 0
When an edge or logic change on the INT0 pin triggers an interrupt request, INTF0 becomes set
(one). If the I-bit in SREG and the INT0 bit in GICR are set (one), the MCU will jump to the corre-
sponding Interrupt Vector. The flag is cleared when the interrupt routine is executed.
Alternatively, the flag can be cleared by writing a logical one to it. This flag is always cleared
when INT0 is configured as a level interrupt.
• Bit 5 – INTF2: External Interrupt Flag 2
When an event on the INT2 pin triggers an interrupt request, INTF2 becomes set (one). If the I-
bit in SREG and the INT2 bit in GICR are set (one), the MCU will jump to the corresponding
Interrupt Vector. The flag is cleared when the interrupt routine is executed. Alternatively, the flag
can be cleared by writing a logical one to it. Note that when entering some sleep modes with the
INT2 interrupt disabled, the input buffer on this pin will be disabled. This may cause a logic
change in internal signals which will set the INTF2 flag. See
Modes” on page 67
• Bit 4 – PCIF1: Pin Change Interrupt Flag 1
When a logic change on any PCINT15..8 pin triggers an interrupt request, PCIF1 becomes set
(one). If the I-bit in SREG and the PCIE1 bit in GICR are set (one), the MCU will jump to the cor-
responding Interrupt Vector. The flag is cleared when the interrupt routine is executed.
Alternatively, the flag can be cleared by writing a logical one to it.
• Bit 3 – PCIF0: Pin Change Interrupt Flag 0
When a logic change on any PCINT7..0 pin triggers an interrupt request, PCIF0 becomes set
(one). If the I-bit in SREG and the PCIE0 bit in GICR are set (one), the MCU will jump to the cor-
responding Interrupt Vector. The flag is cleared when the interrupt routine is executed.
Alternatively, the flag can be cleared by writing a logical one to it.
Bit
Read/Write
Initial Value
INTF1
R/W
7
0
for more information.
INTF0
R/W
6
0
INTF2
R/W
5
0
PCIF1
R/W
4
0
PCIF0
R/W
3
0
R
2
0
“Digital Input Enable and Sleep
R
1
0
ATmega162/V
R
0
0
GIFR
87

Related parts for ATMEGA162-16PJ