MC908AP64CFAE Freescale Semiconductor, MC908AP64CFAE Datasheet - Page 210

IC MCU 64K 8MHZ SPI 48-LQFP

MC908AP64CFAE

Manufacturer Part Number
MC908AP64CFAE
Description
IC MCU 64K 8MHZ SPI 48-LQFP
Manufacturer
Freescale Semiconductor
Series
HC08r
Datasheets

Specifications of MC908AP64CFAE

Core Processor
HC08
Core Size
8-Bit
Speed
8MHz
Connectivity
I²C, IRSCI, SCI, SPI
Peripherals
LED, LVD, POR, PWM
Number Of I /o
32
Program Memory Size
64KB (64K x 8)
Program Memory Type
FLASH
Ram Size
2K x 8
Voltage - Supply (vcc/vdd)
2.7 V ~ 5.5 V
Data Converters
A/D 8x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
48-LQFP
Cpu Family
HC08
Device Core Size
8b
Frequency (max)
8MHz
Interface Type
SCI/SPI
Total Internal Ram Size
2KB
# I/os (max)
32
Number Of Timers - General Purpose
4
Operating Supply Voltage (typ)
3.3/5V
Operating Supply Voltage (max)
5.5V
Operating Supply Voltage (min)
2.7V
On-chip Adc
8-chx10-bit
Instruction Set Architecture
CISC
Operating Temp Range
-40C to 85C
Operating Temperature Classification
Industrial
Mounting
Surface Mount
Pin Count
48
Package Type
LQFP
Controller Family/series
HC08
No. Of I/o's
32
Ram Memory Size
2KB
Cpu Speed
8MHz
No. Of Timers
2
Embedded Interface Type
I2C, SCI, SPI
Rohs Compliant
Yes
Processor Series
HC08AP
Core
HC08
Data Bus Width
8 bit
Data Ram Size
2 KB
Maximum Clock Frequency
8 MHz
Number Of Programmable I/os
32
Number Of Timers
4
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
Development Tools By Supplier
FSICEBASE, DEMO908AP64E, M68CBL05CE
Minimum Operating Temperature
- 40 C
Package
48LQFP
Family Name
HC08
Maximum Speed
8 MHz
Operating Supply Voltage
3.3|5 V
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Eeprom Size
-
Lead Free Status / Rohs Status
Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
MC908AP64CFAE
Manufacturer:
Freescale
Quantity:
3 359
Part Number:
MC908AP64CFAE
Manufacturer:
Freescale Semiconductor
Quantity:
10 000
Part Number:
MC908AP64CFAER
Manufacturer:
Freescale Semiconductor
Quantity:
10 000
Serial Peripheral Interface Module (SPI)
13.4.2 Slave Mode
The SPI operates in slave mode when the SPMSTR bit is clear. In slave mode, the SPSCK pin is the input
for the serial clock from the master MCU. Before a data transmission occurs, the SS pin of the slave SPI
must be at logic 0. SS must remain low until the transmission is complete. (See
In a slave SPI module, data enters the shift register under the control of the serial clock from the master
SPI module. After a byte enters the shift register of a slave SPI, it transfers to the receive data register,
and the SPRF bit is set. To prevent an overflow condition, slave software then must read the receive data
register before another full byte enters the shift register.
The maximum frequency of the SPSCK for an SPI configured as a slave is the bus clock speed (which is
twice as fast as the fastest master SPSCK clock that can be generated). The frequency of the SPSCK for
an SPI configured as a slave does not have to correspond to any SPI baud rate. The baud rate only
controls the speed of the SPSCK generated by an SPI configured as a master. Therefore, the frequency
of the SPSCK for an SPI configured as a slave can be any frequency less than or equal to the bus speed.
When the master SPI starts a transmission, the data in the slave shift register begins shifting out on the
MISO pin. The slave can load its shift register with a new byte for the next transmission by writing to its
transmit data register. The slave must write to its transmit data register at least one bus cycle before the
master starts the next transmission. Otherwise, the byte already in the slave shift register shifts out on the
MISO pin. Data written to the slave shift register during a transmission remains in a buffer until the end of
the transmission.
When the clock phase bit (CPHA) is set, the first edge of SPSCK starts a transmission. When CPHA is
clear, the falling edge of SS starts a transmission. (See
13.5 Transmission Formats
During an SPI transmission, data is simultaneously transmitted (shifted out serially) and received (shifted
in serially). A serial clock synchronizes shifting and sampling on the two serial data lines. A slave select
line allows selection of an individual slave SPI device; slave devices that are not selected do not interfere
with SPI bus activities. On a master SPI device, the slave select line can optionally be used to indicate
multiple-master bus contention.
13.5.1 Clock Phase and Polarity Controls
Software can select any of four combinations of serial clock (SPSCK) phase and polarity using two bits
in the SPI control register (SPCR). The clock polarity is specified by the CPOL control bit, which selects
an active high or low clock and has no significant effect on the transmission format.
The clock phase (CPHA) control bit selects one of two fundamentally different transmission formats. The
clock phase and polarity should be identical for the master SPI device and the communicating slave
device. In some cases, the phase and polarity are changed between transmissions to allow a master
device to communicate with peripheral slaves having different requirements.
210
SPSCK must be in the proper idle state before the slave is enabled to
prevent SPSCK from appearing as a clock edge.
Before writing to the CPOL bit or the CPHA bit, disable the SPI by clearing
the SPI enable bit (SPE).
MC68HC908AP A-Family Data Sheet, Rev. 3
NOTE
NOTE
13.5 Transmission
Formats.)
13.7.2 Mode Fault
Freescale Semiconductor
Error.)

Related parts for MC908AP64CFAE