ATMEGA16L-8AU Atmel, ATMEGA16L-8AU Datasheet - Page 141

IC AVR MCU 16K 8MHZ 3V 44TQFP

ATMEGA16L-8AU

Manufacturer Part Number
ATMEGA16L-8AU
Description
IC AVR MCU 16K 8MHZ 3V 44TQFP
Manufacturer
Atmel
Series
AVR® ATmegar
Datasheets

Specifications of ATMEGA16L-8AU

Core Processor
AVR
Core Size
8-Bit
Speed
8MHz
Connectivity
I²C, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, POR, PWM, WDT
Number Of I /o
32
Program Memory Size
16KB (8K x 16)
Program Memory Type
FLASH
Eeprom Size
512 x 8
Ram Size
1K x 8
Voltage - Supply (vcc/vdd)
2.7 V ~ 5.5 V
Data Converters
A/D 8x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
44-TQFP, 44-VQFP
Processor Series
ATMEGA16x
Core
AVR8
Data Bus Width
8 bit
Data Ram Size
1 KB
Interface Type
JTAG/SPI/UART
Maximum Clock Frequency
8 MHz
Number Of Programmable I/os
32
Number Of Timers
3
Operating Supply Voltage
2.7 V to 5.5 V
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
3rd Party Development Tools
EWAVR, EWAVR-BL
Minimum Operating Temperature
- 40 C
On-chip Adc
8-ch x 10-bit
For Use With
ATSTK600-TQFP44 - STK600 SOCKET/ADAPTER 44-TQFPATSTK600 - DEV KIT FOR AVR/AVR32770-1007 - ISP 4PORT ATMEL AVR MCU SPI/JTAG770-1005 - ISP 4PORT FOR ATMEL AVR MCU JTAG770-1004 - ISP 4PORT FOR ATMEL AVR MCU SPIATJTAGICE2 - AVR ON-CHIP D-BUG SYSTEMATSTK500 - PROGRAMMER AVR STARTER KIT
Lead Free Status / RoHS Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATMEGA16L-8AU
Manufacturer:
Atmel
Quantity:
1 600
Part Number:
ATMEGA16L-8AU
Manufacturer:
ATMEL
Quantity:
6 166
Part Number:
ATMEGA16L-8AU
Manufacturer:
ATMEL
Quantity:
494
Part Number:
ATMEGA16L-8AU
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATMEGA16L-8AU
Manufacturer:
ATMEL
Quantity:
8 000
Part Number:
ATMEGA16L-8AU
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Part Number:
ATMEGA16L-8AUR
Manufacturer:
Atmel
Quantity:
10 000
2466T–AVR–07/10
• Bit 4 – MSTR: Master/Slave Select
This bit selects Master SPI mode when written to one, and Slave SPI mode when written logic
zero. If SS is configured as an input and is driven low while MSTR is set, MSTR will be cleared,
and SPIF in SPSR will become set. The user will then have to set MSTR to re-enable SPI Mas-
ter mode.
• Bit 3 – CPOL: Clock Polarity
When this bit is written to one, SCK is high when idle. When CPOL is written to zero, SCK is low
when idle. Refer to
rized below:
Table 56. CPOL Functionality
• Bit 2 – CPHA: Clock Phase
The settings of the Clock Phase bit (CPHA) determine if data is sampled on the leading (first) or
trailing (last) edge of SCK. Refer to
tionality is summarized below:
Table 57. CPHA Functionality
• Bits 1, 0 – SPR1, SPR0: SPI Clock Rate Select 1 and 0
These two bits control the SCK rate of the device configured as a Master. SPR1 and SPR0 have
no effect on the Slave. The relationship between SCK and the Oscillator Clock frequency f
shown in the following table:
Table 58. Relationship Between SCK and the Oscillator Frequency
SPI2X
CPOL
CPHA
0
0
0
0
1
1
1
1
0
1
0
1
Figure 67
SPR1
0
0
1
1
0
0
1
1
Leading Edge
Leading Edge
and
Sample
Falling
Rising
Setup
Figure 68
Figure 67
SPR0
0
1
0
1
0
1
0
1
for an example. The CPOL functionality is summa-
and
Figure 68
SCK Frequency
f
f
f
f
f
f
f
f
osc
osc
osc
osc
osc
osc
osc
osc
/
/
/
/
/
/
/
/
4
16
64
128
2
8
32
64
for an example. The CPHA func-
Trailing Edge
Trailing Edge
Sample
Falling
Rising
Setup
ATmega16(L)
osc
141
is

Related parts for ATMEGA16L-8AU