DS34S101GN+ Maxim Integrated Products, DS34S101GN+ Datasheet - Page 3

no-image

DS34S101GN+

Manufacturer Part Number
DS34S101GN+
Description
IC TRANSPORT TDM SGL 256-CSBGA
Manufacturer
Maxim Integrated Products
Datasheet

Specifications of DS34S101GN+

Lead Free Status / RoHS Status
Lead free / RoHS Compliant
MEF 8, MFA 8.0.0 and the IETF RFC 5086 (CESoPSN). It supports E1/T1/E3/T3 while taking into account the
TDM structure. The level of structure must be chosen for proper payload conversion such as the framing type (i.e.
frame or multiframe). This method is less sensitive to PSN impairments but lost packets could still cause service
interruption.
2 Detailed Description
The DS34S108 is an 8-port TDM-over-Packet (TDMoP) IC. The DS34S104, DS34S102 and DS34S101 have the
same functionality as the DS34S108, except they have only 4, 2 or 1 ports, respectively. These sophisticated
devices can map and demap multiple E1/T1 data streams or a single E3/T3/STS-1 data stream to and from IP,
MPLS or Ethernet networks. A built-in MAC supports connectivity to a single 10/100 Mbps PHY over an MII, RMII
or SSMII interface. The DS34S10x devices are controlled through a 16 or 32-bit parallel bus interface or a high-
speed SPI serial interface.
The TDM-over-Packet (TDMoP) core is the enabling block for circuit emulation and other network applications. It
performs transparent transport of legacy TDM traffic over Packet Switched-Networks (PSN). The TDMoP core
implements payload mapping methods such as AAL1 for circuit emulation, HDLC method, structure-agnostic
SAToP method, and the structure-aware CESoPSN method.
The AAL1 payload-type machine maps and demaps E1, T1, E3, T3, STS-1 and other serial data flows into and out
of IP, MPLS or Ethernet packets, according to the methods described in ITU-T Y.1413, Y.1453, MEF 8, MFA 4.1
and IETF RFC 5087 (TDMoIP). It supports E1/T1 structured mode with or without CAS, using a timeslot size of 8
bits, or unstructured mode (carrying serial interfaces, unframed E1/T1 or E3/T3/STS-1 traffic).
The HDLC payload-type machine maps and demaps HDLC dataflows into and out of IP/MPLS packets according
to IETF RFC 4618 (excluding clause 5.3 – PPP) and IETF RFC 5087 (TDMoIP). It supports 2-, 7- and 8-bit timeslot
resolution (i.e. 16, 56, and 64 kbps respectively), as well as N × 64 kbps bundles (n=1 to 32). Supported
applications of this machine include trunking of HDLC-based traffic (such as Frame Relay) implementing Dynamic
Bandwidth Allocation over IP/MPLS networks and HDLC-based signaling interpretation (such as ISDN D-channel
signaling termination – BRI or PRI, V5.1/2, or GR-303).
The SAToP payload-type machine maps and demaps unframed E1, T1, E3 or T3 data flows into and out of IP,
MPLS or Ethernet packets according to ITU-T Y.1413, Y.1453, MEF 8, MFA 8.0.0 and IETF RFC 4553. It supports
E1/T1/E3/T3 with no regard for the TDM structure. If TDM structure exists it is ignored, allowing this to be the
simplest mapping/demapping method. The size of the payload is programmable for different services. This
emulation suits applications where the provider edges have no need to interpret TDM data or to participate in the
TDM signaling. The PSN network must have almost no packet loss and very low packet delay variation (PDV) for
this method.
The CESoPSN payload-type machine maps and demaps structured E1, T1, E3 or T3 data flows into and out of IP,
MPLS or Ethernet packets with static assignment of timeslots inside a bundle according to ITU-T Y.1413, Y.1453,
Rev: 032609
____________________________________________________ DS34S101, DS34S102, DS34S104, DS34S108
3 of 13

Related parts for DS34S101GN+