LTC3736EUF#TR Linear Technology, LTC3736EUF#TR Datasheet - Page 16

no-image

LTC3736EUF#TR

Manufacturer Part Number
LTC3736EUF#TR
Description
IC CTRLR SW SYNC DUAL 2PH 24QFN
Manufacturer
Linear Technology
Series
PolyPhase®r
Type
Step-Down (Buck)r
Datasheet

Specifications of LTC3736EUF#TR

Internal Switch(s)
No
Synchronous Rectifier
Yes
Number Of Outputs
2
Voltage - Output
0.6 ~ 9.8 V
Current - Output
1A
Frequency - Switching
550kHz ~ 750kHz
Voltage - Input
2.75 ~ 9.8 V
Operating Temperature
-40°C ~ 85°C
Mounting Type
Surface Mount
Package / Case
24-QFN
Lead Free Status / RoHS Status
Contains lead / RoHS non-compliant
Power - Output
-

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Company:
Part Number:
LTC3736EUF#TRLTC3736EUF
Manufacturer:
LT
Quantity:
10 000
Company:
Part Number:
LTC3736EUF#TRLTC3736EUF
Manufacturer:
LINEAR/凌特
Quantity:
20 000
Company:
Part Number:
LTC3736EUF#TRLTC3736EUF#PBF
Manufacturer:
LINEAR
Quantity:
2
Company:
Part Number:
LTC3736EUF#TRPBF
0
Company:
Part Number:
LTC3736EUF#TRLTC3736EUF-1
Manufacturer:
LT
Quantity:
10 000
APPLICATIO S I FOR ATIO
LTC3736
operation improves efficiency by reducing MOSFET switch-
ing losses, both gate charge loss and transition loss.
However, lower frequency operation requires more induc-
tance for a given amount of ripple current.
The internal oscillator for each of the LTC3736’s control-
lers runs at a nominal 550kHz frequency when the PLLLPF
pin is left floating and the SYNC/FCB pin is a DC low or
high. Pulling the PLLLPF to V
pulling the PLLLPF to GND selects 300kHz operation.
Alternatively, the LTC3736 will phase-lock to a clock signal
applied to the SYNC/FCB pin with a frequency between
250kHz and 850kHz (see Phase-Locked Loop and Fre-
quency Synchronization).
Inductor Value Calculation
Given the desired input and output voltages, the inductor
value and operating frequency f
inductor’s peak-to-peak ripple current:
Lower ripple current reduces core losses in the inductor,
ESR losses in the output capacitors, and output voltage
ripple. Thus, highest efficiency operation is obtained at
low frequency with a small ripple current. Achieving this,
however, requires a large inductor.
A reasonable starting point is to choose a ripple current
that is about 40% of I
current occurs at the highest input voltage. To guarantee
that ripple current does not exceed a specified maximum,
the inductor should be chosen according to:
Burst Mode Operation Considerations
The choice of R
the load current at which the LTC3736 enters Burst Mode
operation. When bursting, the controller clamps the peak
inductor current to approximately:
16
I
L
RIPPLE
f
OSC RIPPLE
V
IN
=
V
I
V
V
OUT
IN
OUT
DS(ON)
U
V
OUT(MAX)
IN
f
and inductor value also determines
OSC
V
V
OUT
IN
U
V
OUT
L
IN
. Note that the largest ripple
selects 750kHz operation;
OSC
W
directly determine the
U
The corresponding average current depends on the amount
of ripple current. Lower inductor values (higher I
will reduce the load current at which Burst Mode operation
begins.
The ripple current is normally set so that the inductor
current is continuous during the burst periods. Therefore:
This implies a minimum inductance of:
A smaller value than L
although the inductor current will not be continuous
during burst periods, which will result in slightly lower
efficiency. In general, though, it is a good idea to keep
I
Inductor Core Selection
Once the inductance value is determined, the type of
inductor must be selected. High efficiency converters
generally cannot afford the core loss found in low cost
powdered iron cores, forcing the use of ferrite, molyper-
malloy or other cores. Actual core loss is independent of
core size for a fixed inductor value, but it is very dependent
on inductance selected. As inductance increases, core
losses go down. Unfortunately, increased inductance re-
quires more turns of wire and therefore copper losses will
increase.
Ferrite designs have very low core loss and are preferred
at high switching frequencies, so design goals can
concentrate on copper loss and preventing saturation.
Ferrite core material saturates “hard,” which means that
inductance collapses abruptly when the peak design cur-
rent is exceeded. This results in an abrupt increase in
inductor ripple current and consequent output voltage
ripple. Do not allow the core to saturate!
Molypermalloy (from Magnetics, Inc.) is a very good, low
loss core material for toroids, but it is more expensive
RIPPLE
I
I
L
RIPPLE
BURST PEAK
MIN
comparable to I
(
≤ I
f
OSC BURST PEAK
BURST(PEAK)
)
V
IN
=
I
4
1
V
OUT
MIN
BURST(PEAK)
(
V
SENSE MAX
R
DS ON
could be used in the circuit,
)
(
(
V
)
V
OUT
IN
.
)
RIPPLE
3736fa
)

Related parts for LTC3736EUF#TR