LM2640MTC-ADJ National Semiconductor, LM2640MTC-ADJ Datasheet - Page 17

no-image

LM2640MTC-ADJ

Manufacturer Part Number
LM2640MTC-ADJ
Description
Dual Adjustable Step-Down Switching Power Supply Controller
Manufacturer
National Semiconductor

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
LM2640MTC-ADJ
Manufacturer:
nstion
Quantity:
184
Part Number:
LM2640MTC-ADJ
Manufacturer:
NS/国半
Quantity:
20 000
Company:
Part Number:
LM2640MTC-ADJ
Quantity:
168
Part Number:
LM2640MTC-ADJ/NOPB
Manufacturer:
NS/TI
Quantity:
400
Design Procedure
case, the manufacturer’s specified inductance value is usu-
ally the maximum value, which means the actual inductance
in your application will be much less.
An inductor with a flatter inductance curve is preferable,
since the loop characteristics of any switching converter are
affected somewhat by inductance value. An inductor which
has a more constant inductance value will give more consis-
tent loop bandwidth when the load current is varied.
The data sheet for the inductor must be reviewed carefully to
verify that the selected component will have the desired
inductance at the frequency and current for the application.
Current Rating
This specification may be the most confusing of all when
picking an inductor, as manufacturers use different methods
for specifying an inductor’s current rating.
The current rating specified for an inductor is typically given
in RMS current, although in some cases a peak current
rating will also be given (usually as a multiple of the RMS
rating) which gives the user some indication of how well the
inductance operates in the saturation region.
Other things being equal, a higher peak current rating is
preferred, as this allows the inductor to tolerate high values
of ripple current without significant loss of inductance.
In the some cases where the inductance vs. current curve is
relatively flat, the given current rating is the point where the
inductance drops 10% below the nominal value. If the induc-
tance varies a lot with current, the current rating listed by the
manufacturer may be the “center point” of the curve. This
means if that value of current is used in your application, the
amount of inductance will be less than the specified value.
DC Resistance
The DC resistance of the wire used in an inductor dissipates
power which reduces overall efficiency. Thicker wire de-
creases resistance, but increases size, weight, and cost. A
good tradeoff is achieved when the inductor’s copper wire
losses are about 2% of the maximum output power.
Selecting An Inductor
Determining the amount of inductance required for an appli-
cation can be done using the formula:
(Continued)
17
Where:
V
V
F is the switching frequency, F
I
for this is about 30% of the DC output current.
It can be seen from the above equation, that increasing the
switching frequency reduces the amount of required induc-
tance proportionally. Of course, higher frequency operation
is typically less efficient because switching losses become
more predominant as a percentage of total power losses.
It should also be noted that reducing the inductance will
increase inductor ripple current (other terms held constant).
This is a good point to remember when selecting an inductor:
increased ripple current increases the FET conduction
losses, inductor core losses, and requires a larger output
capacitor to maintain a given amount of output ripple volt-
age. This means that a cheaper inductor (with less induc-
tance at the operating current of the application) will cost
money in other places.
INPUT CAPACITORS
The switching action of the high-side FET requires that high
peak currents be available to the switch or large voltage
transients will appear on the V
currents, a low ESR capacitor must be connected between
the drain of the high-side FET and ground. The capacitor
must be located as close as possible to the FET (maximum
distance = 0.5 cm).
A solid Tantalum or low ESR aluminum electrolytic can be
used for this capacitor. If a Tantalum is used, it must be able
to withstand the turn-ON surge current when the input power
is applied. To assure this, the capacitor must be surge tested
by the manufacturer and guaranteed to work in such appli-
cations.
Caution: If a typical off-the-shelf Tantalum is used that has
not been surge tested, it can be blown during power-up and
will then be a dead short. This can cause the capacitor to
catch fire if the input source continues to supply current.
Voltage Rating
For an aluminum electrolytic, the voltage rating must be at
least 25% higher than the maximum input voltage for the
application.
Tantalum capacit
RIPPLE
IN
OUT
is the maximum input voltage.
is the output voltage.
is the inductor ripple current. In general, a good value
OSC
IN
line. To supply these peak
www.national.com

Related parts for LM2640MTC-ADJ