tp11368 National Semiconductor Corporation, tp11368 Datasheet - Page 4

no-image

tp11368

Manufacturer Part Number
tp11368
Description
Octal Adaptive Differential Pcm Processor
Manufacturer
National Semiconductor Corporation
Datasheet

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
tp11368V/NOPB
Manufacturer:
Texas Instruments
Quantity:
10 000
www.national.com
Functional Description
The TP11368 is capable of processing 16 independent chan-
nels (half duplex) or 8 full-duplex PCM channels within 125
µs (8 kHz).
The logic state of TRB at the falling edge of CE determines
which input register is active during that CE period and which
output register will be active in the following third CE period.
The input data is processed (PCM data encoded or ADPCM
data decoded) during the second cycle and shifted out in the
third cycle of CE while CE is high.
SERIAL I/O
Input data is transferred into the TP11368 on the falling edge
of the clock signal, while output data is transmitted on the ris-
ing edge of the clock signal. PCM data is transferred syn-
chronously using PSCK, while ADPCM data is transferred
synchronously using ASCK. The clock signals ASCK and
PSCK should be high while CE changes. All serial data is
transferred with MSB first. Figure 2 and Figure 3 show the
serial input and output structures, respectively.
PCM Serial Input Register
The serial PCM data to be encoded is shifted into the 8-bit
PCM input register with the falling edges of PSCK while CE
and TRB are high. The falling edge of CE latches the state of
ADPCM Output Register
The internal encoded parallel ADPCM data is loaded into the
5-bit ADPCM output register with the falling edge of CE sig-
nal. The first MSB data is shifted out after the rising edge of
CE, subsequent ADPCM serial data is shifted out with the
rising edge of ASCK. Table 4 shows the transfer order of the
ADPCM output data. If more than 4 ASCK clocks are avail-
able while CE is high in the 32, 24, and 16 kbps modes, the
ADPCM output data will recirculate starting with the MSB. In
the case of the 40 kbps mode, the ADPCM output pattern will
recirculate, starting with the MSB, with the fifth rising edge of
ASCK while CE is high.
(Continued)
FIGURE 2. Serial Input Structure
4
the input register and transfers the last 8 bits data prior to the
CE transition to the core for processing. The 8-bit PCM input
register is cleared asynchronously with RSTB going low.
ADPCM Serial Input Register
The ADPCM serial input register is a 5-bit shift register to
store the 5-bit data in the 40 kbps ADPCM mode. Serial input
data is latched in with the falling edges of ASCK while CE is
high and TRB is low. A minimum number of five low going
ASCK pulses must be available within the CE pulse when
operating in the 40 kbps mode. For the 32, 24 and 16 kbps
modes, a minimum of four low going ASCK pulses must be
available while CE is high. The falling edge of CE latches the
last 5 bits data in the 40 kbps mode or the last 4 bits data in
the 32, 24, and 16 kbps modes prior to the CE transistion.
See Table 3 for the position of the ADPCM data in the 5-bit
input register when 5 ASCK low going pulses occur while CE
is high and TRB is low. Note that bit 1 in Table 3 is the LSB.
PCM Output Register
The decoded 8-bit parallel PCM data is loaded into an 8-bit
parallel-to-serial output shift register with the falling edge of
CE. The MSB data is shifted out with the leading edge of CE,
and subsequent data are shifted out with the rising edges of
PSCK while CE is high. The 8-bit PCM data at the RSO out-
put will recirculate with the MSB first after the seventh rising
edge of PSCK while CE is high.
Figure 4 shows the full duplex timing diagram for the 40 kbps
mode. For the 32, 24 and 16 kbps modes only four ASCK low
pulses are needed while CE is high (see Figure 5 ).
TRB is alternate high and low in the full duplex mode at each
falling edge of CE for a transmit (encoder) operation followed
DS012902-4

Related parts for tp11368