M34513E4SP MITSUBISHI, M34513E4SP Datasheet

no-image

M34513E4SP

Manufacturer Part Number
M34513E4SP
Description
Single-chip 4-bit CMOS microcomputer. PROM 4096 words x 10 bits, RAM 256 words x 4 bits. One time PROM.
Manufacturer
MITSUBISHI
Datasheet

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
M34513E4SP
Manufacturer:
MITSUBISHI
Quantity:
20 000
Note: shipped in blank
* : Under development
**: Under planning
DESCRIPTION
The 4513/4514 Group is a 4-bit single-chip microcomputer de-
signed with CMOS technology. Its CPU is that of the 4500 series
using a simple, high-speed instruction set. The computer is
equipped with serial I/O, four 8-bit timers (each timer has a reload
register), and 10-bit A-D converter.
The various microcomputers in the 4513/4514 Group include varia-
tions of the built-in memory type and package as shown in the
table below.
FEATURES
M34513M2-XXXSP/FP *
M34513M4-XXXSP/FP *
M34513E4SP/FP * (Note)
M34513M6-XXXFP **
M34513M8-XXXFP **
M34513E8FP ** (Note)
M34514M6-XXXFP *
M34514M8-XXXFP *
M34514E8FP * (Note)
Minimum instruction execution time ................................ 0.75 s
(at 4.0 MHz oscillation frequency, in high-speed mode, V
V to 5.5 V)
Supply voltage
• Middle-speed mode
• High-speed mode
...... 2.5 V to 5.5 V (at 4.2 MHz oscillation frequency, for Mask
...... 2.0 V to 5.5 V (at 3.0 MHz oscillation frequency, for Mask
...... 4.0 V to 5.5 V (at 4.2 MHz oscillation frequency, for Mask
...... 2.5 V to 5.5 V (at 2.0 MHz oscillation frequency, for Mask
...... 2.0 V to 5.5 V (at 1.5 MHz oscillation frequency, for Mask
ROM version and One Time PROM version)
ROM version)
(Operation voltage of A-D conversion: 2.7 V to 5.5 V)
ROM version and One Time PROM version)
ROM version and One Time PROM version)
ROM version)
(Operation voltage of A-D conversion: 2.7 V to 5.5 V)
Product
ROM (PROM) size
2048 words
4096 words
4096 words
6144 words
8192 words
8192 words
6144 words
8192 words
8192 words
(
10 bits)
DD
= 4.0
128 words
256 words
256 words
384 words
384 words
384 words
384 words
384 words
384 words
RAM size
(
APPLICATION
Microwave oven, rice cooker, audio, telephone, office equipment
4 bits)
Timers
Timer 1 ...................................... 8-bit timer with a reload register
Timer 2 ...................................... 8-bit timer with a reload register
Timer 3 ...................................... 8-bit timer with a reload register
Timer 4 ...................................... 8-bit timer with a reload register
Interrupt ........................................................................ 8 sources
Serial I/O ....................................................................... 8 bit-wide
A-D converter .................. 10-bit successive comparison method
Voltage comparator ........................................................ 2 circuits
Watchdog timer ................................................................. 16 bits
Voltage drop detection circuit
Clock generating circuit (ceramic resonator)
LED drive directly enabled (port D)
4513/4514 Group
SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER
SP: 32P4B FP: 32P6B-A
SP: 32P4B FP: 32P6B-A
SP: 32P4B FP: 32P6B-A
MITSUBISHI MICROCOMPUTERS
32P6B-A
32P6B-A
32P6B-A
42P2R-A
42P2R-A
42P2R-A
Package
One Time PROM
One Time PROM
One Time PROM
Mask ROM
Mask ROM
Mask ROM
Mask ROM
Mask ROM
Mask ROM
ROM type

Related parts for M34513E4SP

M34513E4SP Summary of contents

Page 1

... ROM version and One Time PROM version) ...... 2 5.5 V (at 1.5 MHz oscillation frequency, for Mask ROM version) (Operation voltage of A-D conversion: 2 5.5 V) ROM (PROM) size Product M34513M2-XXXSP/FP * M34513M4-XXXSP/FP * M34513E4SP/FP * (Note) M34513M6-XXXFP ** M34513M8-XXXFP ** M34513E8FP ** (Note) M34514M6-XXXFP * M34514M8-XXXFP * M34514E8FP * (Note) Note: shipped in blank ...

Page 2

... RESET CNV X OUT /CNTR 6 D /CNTR Outline 32P4B M34513Mx-XXXFP M34513ExFP / OUT / Outline 32P6B-A MITSUBISHI MICROCOMPUTERS 4513/4514 Group SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER /CMP1+ 24 IN3 A /CMP1- 23 IN2 A /CMP0+ 22 IN1 A /CMP0- 21 IN0 P3 /INT1 /INT0 19 0 VDCE /CMP1+ IN3 A /CMP1- 20 IN2 19 A /CMP0+ IN1 18 A ...

Page 3

... PIN CONFIGURATION (TOP VIEW) 4514 Group /CNTR0 6 D /CNTR1 OUT RESET CNV OUT SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER Outline 42P2R-A MITSUBISHI MICROCOMPUTERS 4513/4514 Group IN7 IN6 IN5 IN4 31 A /CMP1+ IN3 30 A /CMP1- IN2 A /CMP0+ 29 IN1 A /CMP0- 28 IN0 /INT1 1 P3 /INT0 VDCE ...

Page 4

... BLOCK DIAGRAM (4513 Group) 4 MITSUBISHI MICROCOMPUTERS 4513/4514 Group SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER ...

Page 5

... BLOCK DIAGRAM (4514 Group) MITSUBISHI MICROCOMPUTERS 4513/4514 Group SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER 5 ...

Page 6

... V, 4.0 MHz oscillation frequency, in middle- speed mode, output transis- DD tors in the cut-off state) 3 5.0 V, 4.0 MHz oscillation frequency, in high-speed mode, output transistors DD in the cut-off state) 0.1 A (at room temperature output transistors in the cut-off state) DD MITSUBISHI MICROCOMPUTERS 4513/4514 Group SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER Function , S and S , respectively. CK OUT IN ...

Page 7

... CMP0-, CMP0+ pins are also used as A Input CMP1-, CMP1+ pins are used as the voltage comparator input pin when the volt- age comparator function is selected by software. CMP1-, CMP1+ pins are also used as A MITSUBISHI MICROCOMPUTERS 4513/4514 Group SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER Function certainly. ...

Page 8

... V Connect the unused pins to V shortest distance against noise. (Note 2) SS (Note 2) SS MITSUBISHI MICROCOMPUTERS 4513/4514 Group SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER Multifunction Pin Multifunction CMP0- CMP0- A ...

Page 9

... OP3A IAP3 N-channel open-drain 4 OP4A IAP4 4 OP5A CMOS IAP5 . 3 f f(X )/2 IN MITSUBISHI MICROCOMPUTERS 4513/4514 Group SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER Control Remark registers W6 PU0, K0 Built-in programmable pull-up functions Key-on wakeup functions (programmable) PU0, K0 Built-in programmable pull-up functions Key-on wakeup functions (programmable) J1 ...

Page 10

... SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER K0 0 Pull-up transistor PU0 0 IAP0 instruction Pull-up transistor PU0 1 IAP0 instruction Pull-up transistor PU0 2 IAP1 instruction Pull-up transistor PU0 3 IAP1 instruction This symbol represents a parasitic diode on the port. • i represents • MITSUBISHI MICROCOMPUTERS 4513/4514 Group ...

Page 11

... Serial data output 1 Serial data input IAP2 instruction External interrupt circuit IAP3 instruction OP3A instruction T IAP3 instruction Register OP3A instruction T This symbol represents a parasitic diode on the port. —P2 must MITSUBISHI MICROCOMPUTERS 4513/4514 Group SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER OUT /INT0,P3 /INT1 , ...

Page 12

... A Q1 Decoder Decoder Decoder This symbol represents a parasitic diode on the port. • • i represents • The 4513 Group does not have port P4. MITSUBISHI MICROCOMPUTERS 4513/4514 Group SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER /CMP0- IN0 /CMP0+ IN1 /CMP1- IN2 /CMP1+ IN3 /A – IN4 3 IN7 ...

Page 13

... SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER P5 –P5 0 Skip decision (SZD instruction) D – 1 1/2 1 This symbol represents a parasitic diode on the port. • • Applied potential to ports D • i represents • The 4513 Group does not have port P5. MITSUBISHI MICROCOMPUTERS 4513/4514 Group /CNTR0 6 D /CNTR1 7 –D must ...

Page 14

... One-sided edge I1 1 Falling detection circuit 0 1 Both edges Rising detection circuit Wakeup Skip SNZI0 I2 2 One-sided edge I2 Falling 1 detection circuit 0 1 Both edges Rising detection circuit Wakeup Skip SNZI1 MITSUBISHI MICROCOMPUTERS 4513/4514 Group 0 External 0 EXF0 interrupt 1 0 External 1 EXF1 interrupt 1 ...

Page 15

... Fig. 1 AMC instruction execution example SC instruction Fig. 2 RAR instruction execution example Register E Fig. 3 Registers A, B and register E ROM Specifying address The contents of The contents of register D register A MITSUBISHI MICROCOMPUTERS 4513/4514 Group SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER <Carry> (CY) (M(DP)) Addition ALU (A) <Result> <Set> <Clear> RC instruction <Rotation> RAR instruction ...

Page 16

... Skip flag controls skip decision for the conditional skip instructions and continuous described skip instructions. When an interrupt oc- curs, the contents of skip flag is stored automatically in the interrupt stack register (SDP) and the skip condition is retained. 16 MITSUBISHI MICROCOMPUTERS 4513/4514 Group SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER Program counter (PC) Executing BM ...

Page 17

... When using port D, set the port D bit position to register Y certainly and execute the SD, RD, or SZD instruction (Figure 9 Specifying page (bits which speci- Fig. 7 Program counter (PC) structure Z 1 Register Z (2) Fig. 8 Data pointer (DP) structure Fig instruction execution example MITSUBISHI MICROCOMPUTERS 4513/4514 Group SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER Program counter ...

Page 18

... Fig. 10 ROM map of M34514M8/E8 0080 16 0082 16 0084 16 0086 16 0088 16 008A 16 008C 16 008E 16 00FF 16 Fig. 11 Page 1 (addresses 0080 MITSUBISHI MICROCOMPUTERS 4513/4514 Group Page 0 Interrupt address page Page 1 Subroutine special page Page 2 Page 3 Page 31 Page External 0 interrupt address External 1 interrupt address Timer 1 interrupt address ...

Page 19

... Register 128 words MITSUBISHI MICROCOMPUTERS 4513/4514 Group RAM size 128 words 4 bits (512 bits) 256 words 4 bits (1024 bits) 384 words 4 bits (1536 bits) 384 words 4 bits (1536 bits) 384 words 4 bits (1536 bits) 384 words 4 bits (1536 bits 384 words ...

Page 20

... If more than one interrupt request flag is set when the interrupt dis- able state is released, the interrupt priority level is as follows shown in Table 3. 20 MITSUBISHI MICROCOMPUTERS 4513/4514 Group SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER Table 3 Interrupt sources Priority ...

Page 21

... Timer 4 • underflow • • Completion of • A-D conversion Completion of serial I/O transfer Activated condition Fig. 15 Interrupt system diagram MITSUBISHI MICROCOMPUTERS 4513/4514 Group SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER The address of main routine to be executed when returning EXF0 V1 0 EXF1 V1 1 T1F V1 2 ...

Page 22

... Timer 3 interrupt enable bit 0 Note: “R” represents read enabled, and “W” represents write enabled. 22 MITSUBISHI MICROCOMPUTERS SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER • Interrupt control register V2 Interrupt enable bits of timer 3, timer 4, A-D and serial I/O are as- signed to register V2. Set the contents of this register through register A with the TV2A instruction ...

Page 23

... instruction execution cycle Interrupt enabled state Interrupt activated condition is satisfied. MITSUBISHI MICROCOMPUTERS 4513/4514 Group SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER Interrupt disabled state Retaining level of system clock for 4 periods or more is necessary. Flag cleared The program starts from the interrupt address machine cycles (Notes 2, 3) ...

Page 24

... One-sided edge 1 Falling detection circuit Both edges Rising detection circuit Wakeup Skip SNZI0 I2 2 One-sided edge I2 Falling 1 detection circuit Both edges Rising detection circuit Wakeup Skip SNZI1 MITSUBISHI MICROCOMPUTERS 4513/4514 Group Valid waveform selection bit External 0 EXF0 interrupt External 1 EXF1 interrupt ...

Page 25

... INTE Set both the external 1 interrupt enable bit (V1 0 flag to “1.” The external 1 interrupt is now enabled. Now when a valid wave- form is input to the P3 external 1 interrupt occurs. MITSUBISHI MICROCOMPUTERS 4513/4514 Group SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER /INT1 pin. 1 function. However, the 1 ...

Page 26

... When the contents changed, the external interrupt request flag EXF1 may be set. Accordingly, clear EXF1 flag with the SNZ1 instruction MITSUBISHI MICROCOMPUTERS SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER • Interrupt control register I2 Register I2 controls the valid waveform for the external 1 inter- rupt. Set the contents of this register through register A with the TI2A instruction ...

Page 27

... The fixed dividing frequency timer has the fixed frequency divid- ing ratio (n). An interrupt request flag is set to “1” after every n count of a count pulse. Reload 1st underflow 2nd underflow n+1 count n+1 count MITSUBISHI MICROCOMPUTERS 4513/4514 Group Reload Time An interrupt occurs or a skip instruction is executed. 27 ...

Page 28

... Timer 3 interrupt • CNTR1 output 1 to 256 • Timer 4 interrupt • CNTR1 output 65536 • Watchdog timer (The 15th bit is counted twice) • Timer 2 count source (16-bit counter underflow) MITSUBISHI MICROCOMPUTERS 4513/4514 Group Control Use of output signal register ...

Page 29

... Timer 2 underflow signal output 1 1/2 Timer 4 underflow signal 16-bit timer (WDT) Instruction clock WRST instruction S WDF1 WDF2 Q WEF Reset signal R MITSUBISHI MICROCOMPUTERS 4513/4514 Group SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER Timer 1 T1F interrupt T1AB Timer 2 T2F interrupt Timer 3 T3F interrupt T3AB Timer 4 ...

Page 30

... CNTR0 output control bit /CNTR0 output control bit 0 6 Note: “R” represents read enabled, and “W” represents write enabled. 30 MITSUBISHI MICROCOMPUTERS SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER at RAM back-up : 0000 at RAM back-up : 0000 at reset : 0000 at reset : 0000 2 2 Stop (state initialized) ...

Page 31

... Data can be read from timer 2 with the TAB2 instruction. When reading the data, stop the counter and then execute the TAB2 in- struction. The output from D signal divided by 2 can be controlled. MITSUBISHI MICROCOMPUTERS 4513/4514 Group /CNTR0 pin by timer 2 underflow 6 31 ...

Page 32

... Data can be read from timer 4 with the TAB4 instruction. When reading the data, stop the counter and then execute the TAB4 in- struction. The output from D /CNTR1 pin by timer 4 underflow 7 signal divided by 2 can be controlled. 32 MITSUBISHI MICROCOMPUTERS 4513/4514 Group SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER (8) Timer I/O pin (D /CNTR0 ...

Page 33

... WRST EPOF POF Oscillation stop Fig. 21 Program example to enter the RAM back-up mode when using the watchdog timer MITSUBISHI MICROCOMPUTERS 4513/4514 Group SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER 16 BFFF 16 3FFF 16 System reset ; WDF1 flag reset ; POF instruction enabled (RAM back-up state) ” ...

Page 34

... Instruction clock signal divided Instruction clock signal divided Input ports Serial I/O ports S 0 External clock 1 Internal clock (instruction clock divided MITSUBISHI MICROCOMPUTERS 4513/4514 Group SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER Pin function when selecting serial I/O Clock I Serial data output (S ) OUT Serial data input ( – ...

Page 35

... I/O transmission/reception is started. (4) Serial I/O mode register J1 Register J1 controls the synchronous clock, P2 and register A with the TJ1A instruction. The TAJ1 instruction can be used to transfer the contents of register J1 to register MITSUBISHI MICROCOMPUTERS 4513/4514 Group SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER Serial I/O register (SI ...

Page 36

... Table 13 shows the data transfer sequence. Slave (external clock) S signal RDY OUT S IN (Bit (Bit 3) 0 MITSUBISHI MICROCOMPUTERS 4513/4514 Group SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER OUT (Bit Serial I/O mode register J1 External clock selected as a synchronous clock Serial I/O port ...

Page 37

... RDY S S ’ OUT –M : the contents of master serial I Rising of SCK : serial input Fig. 25 Timing of serial I/O data transfer ’ ’ –S : the contents of slave serial I/O register 0 7 Falling of SCK : serial output MITSUBISHI MICROCOMPUTERS 4513/4514 Group SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER ...

Page 38

... However, the SIOF flag is set to “1” when the clock is counted 8 times after executing the SST in- struction. Be sure to set the initial level of the external clock to “H.” 38 MITSUBISHI MICROCOMPUTERS SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER Slave (reception) [Initial setting] • ...

Page 39

... Comparator register (8) (Note 2) /A –P4 /A and the IAP4 and OP4A instructions. 0 IN4 3 IN7 MITSUBISHI MICROCOMPUTERS 4513/4514 Group SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER Characteristics Successive comparison method 10 bits Linearity error: 2LSB Non-linearity error: 0.9LSB 46.5 s (High-speed mode at 4.0 MHz oscillation frequency) 4 for 4513 Group ...

Page 40

... Also, for the port input, the port input function of the pin functions as analog input is undefined. MITSUBISHI MICROCOMPUTERS 4513/4514 Group at RAM back-up : state retained ...

Page 41

... AD. An A-D interrupt activated condition is satisfied and the ADF flag is set to “1” as soon as A-D conversion completes (Figure 27). , the topmost bit of the IN ------------- ----- ------------- ------------- 0 ----- ------------- ------------- 1 ----- ------------- ------------- 3 ----- ------------- MITSUBISHI MICROCOMPUTERS 4513/4514 Group SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER Comparison voltage (V ) value ref 1024 ) = IN 41 ...

Page 42

... Transfer the contents of register ( (0, 0, 2). Transfer the high-order 8 bits of converted data to registers A and B (TABAD instruction). Transfer the contents of register ( (0, 0, 1). Transfer the contents of register B to register A, and then, store into M( (0, 0, 0). 42 MITSUBISHI MICROCOMPUTERS 4513/4514 Group SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER 62 machine cycles (Bit 3) (Bit 0) 0 ...

Page 43

... ADST instruction Comparison result store flag(ADF) DAC operation signal Fig. 29 Comparator operation timing chart MITSUBISHI MICROCOMPUTERS 4513/4514 Group SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER (12) Comparison result store flag (ADF) In comparator mode, the ADF flag, which shows completion of A-D conversion, stores the results of comparing the analog input volt- age with the comparison voltage. When the analog input voltage is lower than the comparison voltage, the ADF flag is set to “ ...

Page 44

... A-D conversion characteristics. DD Full-scale transition voltage (V ) FST b–a [LSB [LSB Actual A-D conversion characteristics Ideal line of A-D conversion between V –V 0 1022 n (V) (V) MITSUBISHI MICROCOMPUTERS 4513/4514 Group SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER ) 0T ) FST 0T and FST 1022 DD Analog voltage and V of FST and FST ...

Page 45

... CMP1–/A IN2 CMP1 + CMP1+/A IN3 Note: Bits 0 and 1 of register Q3 can be only read. Fig. 31 Voltage comparator structure MITSUBISHI MICROCOMPUTERS SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER Table 17 Voltage comparator characteristics Parameter Voltage comparator function Input pin Supply voltage Input voltage Comparison check error ...

Page 46

... When CMP0- < CMP0 “1” 0 • When CMP1- > CMP1 “0” 1 When CMP1- < CMP1 “1” MITSUBISHI MICROCOMPUTERS SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER at reset : 0000 at RAM back-up : state retained 2 0 Voltage comparator (CMP1) invalid 1 Voltage comparator (CMP1) valid 0 Voltage comparator (CMP0) invalid ...

Page 47

... SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER (Note) is counted 16892 to f 16895 times. is counted 16892 to f 16895 times. Note: Keep the value of supply voltage to the minimum value or more of the recommended operating conditions. MITSUBISHI MICROCOMPUTERS 4513/4514 Group Software starts (address 0 in page 0) Software starts (address 0 in page 0) 47 ...

Page 48

... Function D – High impedance (Note – High impedance (Notes – High impedance P2 – High impedance (Note High impedance (Note 0– 3 High impedance (Note 3) P5 – MITSUBISHI MICROCOMPUTERS 4513/4514 Group V DD RESET pin voltage Reset state Internal reset signal Reset released State ) 2 ...

Page 49

... Pull-up control register PU0 ................................................................................................. • Direction register FR0 .......................................................................................................... • Carry flag (CY) ...................................................................................................................... • Register A ............................................................................................................................. • Register B ............................................................................................................................. • Register D ............................................................................................................................. • Register E ............................................................................................................................. • Register X ............................................................................................................................. • Register Y ............................................................................................................................. • Register Z ............................................................................................................................. • Stack pointer (SP) ................................................................................................................ Fig. 35 Internal state at reset MITSUBISHI MICROCOMPUTERS 4513/4514 Group SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER ...

Page 50

... V Fig. 37 Voltage drop detection circuit operation waveform 50 SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER Voltage drop detection circuit Watchdog timer output WEF (detection voltage). RST MITSUBISHI MICROCOMPUTERS 4513/4514 Group Internal reset signal The microcomputer starts operation after f counted IN 16892 to 16895 times. ...

Page 51

... RESET pin, or • reset by watchdog timer is performed, or • voltage drop detection circuit detects the voltage drop. In this case, the P flag is “0.” MITSUBISHI MICROCOMPUTERS 4513/4514 Group SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER Table 20 Functions and states retained at RAM back-up ...

Page 52

... The EXF1 flag is not set. 52 MITSUBISHI MICROCOMPUTERS SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER Remarks Set the port using the key-on wakeup function selected with register K0 to “H” level before going into the RAM back-up state because the port P0 shares the falling edge detection circuit with port P1. Select the return level (“ ...

Page 53

... SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER A POF instruction is executed f(X ) oscillation IN Return input (Stabilizing time oscillation is automatically generated by hardware Fig. 40 Start condition identified example using the SNZP in- struction MITSUBISHI MICROCOMPUTERS 4513/4514 Group B f(X ) stop IN (RAM back-up mode) Software start Yes P = “1” Warm start ...

Page 54

... EXF0 may be set. Accordingly, clear EXF0 flag with the SNZ0 instruction When the contents changed, the external interrupt request flag EXF1 may be set. Accordingly, clear EXF1 flag with the SNZ1 instruction MITSUBISHI MICROCOMPUTERS SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER at reset : 0000 at RAM back-up : state retained 2 0 ...

Page 55

... Not used MR 0 Note : “R” represents read enabled, and “W” represents write enabled. MITSUBISHI MICROCOMPUTERS SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER • Control circuit to switch the middle-speed mode and high-speed mode • Control circuit to return from the RAM back-up state System clock ...

Page 56

... MITSUBISHI MICROCOMPUTERS 4513/4514 Group SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER 4513/4514 damping resistor Rd de- pending on the oscillation X IN OUT frequency. (A feedback resistor is Rd built-in.) Use the resonator manu- facturer’s recommended value because constants C OUT such as capacitance de- pend on the resonator ...

Page 57

... The input of D CMP0+, CMP1-, CMP1+, and I when CNTR0, CNTR1, S and A IN4 /INT0 pin, the external 0 0 MITSUBISHI MICROCOMPUTERS 4513/4514 Group SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER /INT1 pin is changed 1 /INT1 pin is changed with the bit 2 of register I2 (refer 1 /INT1 pin, the external 1 1 ...

Page 58

... When the overvoltage applied to the A-D conversion circuit may occur, connect an external circuit in order to keep the voltage within the rated range as shown the Figure 48. In addition, test the application products sufficiently. 58 MITSUBISHI MICROCOMPUTERS 4513/4514 Group SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER Sensor A IN Apply the voltage withiin the specifications to an analog input pin ...

Page 59

... Bits 0 and 1 of register Q3 can be only read. Note that they can- not be written. Reading the comparison result of voltage comparator 18 Read the voltage comparator comparison result from register Q3 after the voltage comparator response time (max. 20 passed from the voltage comparator function become valid. MITSUBISHI MICROCOMPUTERS 4513/4514 Group SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER ...

Page 60

... M(DP MITSUBISHI MICROCOMPUTERS 4513/4514 Group SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER Contents Timer 1 interrupt request flag Timer 2 interrupt request flag Timer 3 interrupt request flag Timer 4 interrupt request flag Watchdog timer flag Watchdog timer enable flag Interrupt enable flag External 0 interrupt request flag ...

Page 61

... AMC (A) (A) + (M(DP (CY) (CY) Carry A n (A) ( AND (A) (A) AND (M(DP)) OR (A) (A) OR (M(DP)) SC (CY (CY) 0 SZC (CY CMA (A) (A) RAR MITSUBISHI MICROCOMPUTERS 4513/4514 Group SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER Group- Mnemonic Function ing SB j (Mj(DP (Mj(DP SZB j (Mj(DP SEAM (A) = (M(DP)) ? SEA – ( ...

Page 62

... TR1AB (R1 – (R1 – TR3AB (R3 – (R3 – MITSUBISHI MICROCOMPUTERS 4513/4514 Group Group- Mnemonic Function ing SNZT1 (T1F After skipping (T1F) 0 SNZT2 (T2F After skipping (T2F) 0 SNZT3 (T3F After skipping (T3F) 0 SNZT4 (T4F After skipping (T4F) 0 IAP0 (A) (P0) OP0A (P0) (A) IAP1 ...

Page 63

... SNZAD (ADF After skipping (ADF) 0 TAQ2 (A) (Q2) TQ2A (Q2) (A) (PC) (PC NOP RAM back-up POF EPOF POF instruction valid SNZP ( WRST (WDF1) 0, (WEF) TAMR (A) (MR) TMRA (MR) (A) TAQ3 (A) (Q3) TQ3A ( (Q3 ) (CMP1 com- 1 parison result) (Q3 ) (CMP0 com- 0 parison result) MITSUBISHI MICROCOMPUTERS 4513/4514 Group ...

Page 64

... A LA TABP TABP 30*** TABP TABP 31*** –D show the high-order 6 bits of the machine language code. The hexadecimal representa MITSUBISHI MICROCOMPUTERS 4513/4514 Group SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER 001010 001011 001100 001101 001110 001111 TABP TABP BML BML*** BL BL*** 32** 48* TABP TABP BML BML*** ...

Page 65

... TAW4 – – – – SST – – – – – ADST –D show the high-order 6 bits of the machine language code. The hexadecimal 9 4 MITSUBISHI MICROCOMPUTERS 4513/4514 Group SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER 101100 101010 101011 101101 101110 101111 TMA TAM ...

Page 66

... TABP TABP TABP TABP –D show the high-order 6 bits of the machine language code. The hexadecimal representa MITSUBISHI MICROCOMPUTERS 4513/4514 Group SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER 001010 001011 001100 001101 001110 001111 TABP TABP BML BML 48* TABP TABP BML BML 49* TABP TABP BML ...

Page 67

... TAW4 – – – – SST – – – – – ADST –D show the high-order 6 bits of the machine language code. The hexadecimal 9 4 MITSUBISHI MICROCOMPUTERS 4513/4514 Group SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER 101100 101010 101011 101101 101110 101111 TMA TAM ...

Page 68

... MITSUBISHI MICROCOMPUTERS 4513/4514 Group SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER Function 1 (A) (B) 1 (B) (A) 1 (A) (Y) 1 (Y) ( – – (B) (E – (A) (E – (DR – – –A ) (DR – (A) ( –A ) (SP – (Y) ( (Y) (Y) – (A) (M(DP)) (X) (X)EXOR( (A) (M(DP)) (X) (X)EXOR( (A) (M(DP)) (X) (X)EXOR( (Y) (Y) – (A) (M(DP)) (X) (X)EXOR( (Y) ( (M(DP)) (A) (X) (X)EXOR(j) ...

Page 69

... result of addition, when the contents of register the next instruction is skipped. – – After transferring the contents of register A to M(DP), an exclusive OR operation is performed between reg- ister X and the value j in the immediate field, and stores the result in register X. MITSUBISHI MICROCOMPUTERS 4513/4514 Group SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER Datailed description 69 ...

Page 70

... MITSUBISHI MICROCOMPUTERS 4513/4514 Group SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER Function 1 ( (SP) (SP (SK(SP)) (PC) ( (PC ) (DR – – (B) (ROM(PC)) – (A) (ROM(PC)) – (PC) (SK(SP)) (SP) (SP) – 1 (Note) 1 (A) (A) + (M(DP)) 1 (A) (A) + (M(DP)) +(CY) (CY) Carry 1 (A) ( (A) (A) AND (M(DP)) 1 (A) (A) OR (M(DP)) 1 (CY (CY (CY (A) ( (Mj(DP (Mj(DP (Mj(DP (A) = (M(DP)) ? ...

Page 71

... Skips the next instruction when the contents of register A is equal to the contents of M(DP). ( – Skips the next instruction when the contents of register A is equal to the value n in the immediate field. SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER Datailed description specified by registers A and D in page MITSUBISHI MICROCOMPUTERS 4513/4514 Group 71 ...

Page 72

... MITSUBISHI MICROCOMPUTERS 4513/4514 Group SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER Function 1 ( – ( ( – (Note (PC ) (DR – – (Note) 1 (SP) (SP (SK(SP)) (PC – (SP) (SP (SK(SP)) (PC – (Note) 2 (SP) (SP (SK(SP)) (PC) ( (PC ) (DR –DR ,A – (Note) 1 (PC) (SK(SP)) (SP) (SP) – (PC) (SK(SP)) (SP) (SP) – (PC) (SK(SP)) (SP) (SP) – (INTE (INTE) ...

Page 73

... Skips the next instruction when the contents of EXF0 flag is “1.” After skipping, clears (0) to the EXF0 flag. (EXF1 – Skips the next instruction when the contents of EXF1 flag is “1.” After skipping, clears (0) to the EXF1 flag. MITSUBISHI MICROCOMPUTERS 4513/4514 Group SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER Datailed description DR DR ...

Page 74

... MITSUBISHI MICROCOMPUTERS 4513/4514 Group SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER Function (INT0) = “H” (INT0) = “L” (INT1) = “H” (INT1) = “L” (A) (V1) 1 (V1) (A) 1 (A) (V2) 1 (V2) (A) 1 (A) (I1) 1 (I1) (A) 1 (A) (I2) 1 (I2) (A) 1 (A) (W1) 1 (W1) (A) 1 (A) (W2) 1 (W2) (A) 1 (A) (W3) 1 (W3) ...

Page 75

... I1 is “0” : Skips the next instruction when the level of INT0 pin is “L.” register I2 is “1” : Skips the next instruction when the level of INT1 pin is “H.” register I2 is “0” : Skips the next instruction when the level of INT1 pin is “L.” MITSUBISHI MICROCOMPUTERS 4513/4514 Group 75 ...

Page 76

... Instruction code Hexadecimal notation MITSUBISHI MICROCOMPUTERS 4513/4514 Group SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER Function 1 (B) (T1 – (A) (T1 – (R1 – (T1 – (R1 – (T1 – (B) (T2 – (A) (T2 – (R2 – (T2 – (R2 – (T2 – (B) (T3 – (A) (T3 – (R3 – (T3 – (R3 – (T3 – (B) (T4 – (A) (T4 –T4 ...

Page 77

... Skips the next instruction when the contents of T3F flag is “1.” After skipping, clears (0) to T3F flag. (T4F – Skips the next instruction when the contents of T4F flag is “1.” After skipping, clears (0) to T4F flag. MITSUBISHI MICROCOMPUTERS 4513/4514 Group SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER Datailed description 77 ...

Page 78

... The 4513 Group does not have these instructions. 78 Instruction code Hexadecimal notation MITSUBISHI MICROCOMPUTERS 4513/4514 Group SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER Function 1 (A) (P0) 1 (P0) (A) 1 (A) (P1) 1 (P1) ( –A ) (P2 – (A) (P3) 1 (P3) (A) 1 (A) (P4) 1 (P4) (A) 1 (A) (P5) 1 (P5) ( (D(Y (D(Y (D(Y ( (K0) (A) 1 (A) (K0) 1 (PU0) (A) 1 (A) (PU0) 1 (FR0) (A) ...

Page 79

... Transfers the contents of register A to pull-up control register PU0. – – Transfers the contents of pull-up control register PU0 to register A. – – Transfers the contents of register A to direction register FR0. MITSUBISHI MICROCOMPUTERS 4513/4514 Group SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER Datailed description 79 ...

Page 80

... MITSUBISHI MICROCOMPUTERS 4513/4514 Group SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER Function 1 (A) (SI – (B) (SI – (SI – (SI – (A) (J1) 1 (J1) (A) 1 (SIOF) 0 Serial I/O starting 1 (SIOF After skipping (SIOF (A) (AD – (B) (AD – However, in the comparator mode, (A) (AD – (B) (AD – (A) ( (AD – (AD –AD ...

Page 81

... Transfers the contents of the voltage comparator control register Q3 to register A. – – Transfers the contents of the high-order 2 bits of register A to the high-order 2 bits of voltage comparator control register Q3, and the comparison result of the voltage comparator is transferred to the low-order 2 bits of the register Q3. MITSUBISHI MICROCOMPUTERS 4513/4514 Group SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER Datailed description 81 ...

Page 82

... EXF0 may be set. Accordingly, clear EXF0 flag with the SNZ0 instruction When the contents changed, the external interrupt request flag EXF1 may be set. Accordingly, clear EXF1 flag with the SNZ1 instruction MITSUBISHI MICROCOMPUTERS SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER at reset : 0000 at reset : 0000 at RAM back-up : 0000 at RAM back-up : 0000 ...

Page 83

... W6 CNTR0 output control bit /CNTR0 output control bit 0 6 Note: “R” represents read enabled, and “W” represents write enabled. MITSUBISHI MICROCOMPUTERS SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER at reset : 0000 at reset : 0000 at RAM back-up : 0000 at RAM back-up : 0000 Stop (state initialized) ...

Page 84

... Notes 1: “R” represents read enabled, “W” represents write enabled. 2: Select A –A with register Q1 after setting register Q2. IN4 IN7 3: Bits 0 and 1 of register Q3 can be only read. 84 MITSUBISHI MICROCOMPUTERS SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER at reset : 0000 at RAM back-up : state retained 2 0 This bit has no function, but read/write is enabled. 1 ...

Page 85

... Port P5 input/output control bit 0 0 Notes 1: “R” represents read enabled, and “W” represents write enabled. 2: The 4513 Group does not have the direction register FR0. MITSUBISHI MICROCOMPUTERS SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER at reset : 0000 at RAM back-up : state retained 2 0 Key-on wakeup not used ...

Page 86

... Power dissipation P d Operating temperature range Topr Tstg Storage temperature range 86 SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER Conditions , RESET RESET Output transistors in cut-off state Package: 42P2R Package: 32P6B Package: 32P4B MITSUBISHI MICROCOMPUTERS 4513/4514 Group Unit Ratings V –0.3 to 7.0 –0 +0 –0 –0 +0 –0 +0.3 ...

Page 87

... DD P0, P1, P4 (Note 3.0 V OUT RESET CK OUT P0, P1, P3, P4 MITSUBISHI MICROCOMPUTERS 4513/4514 Group Limits Min. Typ. Max. 4.2 MHz 2.5 5.5 3.0 MHz 2.0 5.5 4.2 MHz 4.0 5.5 2.0 MHz 2.5 5.5 2.0 1.5 MHz 5.5 4.2 MHz 2 ...

Page 88

... One Time PROM version V DD Middle-speed mode Mask ROM version V DD High-speed mode V DD One Time PROM version V DD High-speed mode V DD MITSUBISHI MICROCOMPUTERS 4513/4514 Group Limits Typ. Max. Min 5.5 V 4 5.5 V 3 5.5 V 4 5.5 V 4 5.5 V 2 5.5 V 1 5 ...

Page 89

... P5: input state pull-up of ports P0 and P1 VDCE port P4 selected, port P5: input state Middle-speed mode Middle-speed mode High-speed mode High-speed mode MITSUBISHI MICROCOMPUTERS 4513/4514 Group SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER Limits Min. Typ. Max – – –1 –1 1.8 f 4.0 MHz IN 0.5 f 400 kHz IN ...

Page 90

... MHz, Middle-speed mode IN f 4.0 MHz, High-speed mode IN Comparator mode 3.072 4.0 MHz, Middle-speed mode IN f 4.0 MHz, High-speed mode IN Test conditions 5 MITSUBISHI MICROCOMPUTERS 4513/4514 Group Limits Unit Typ. Max. Min. V 2.7 5 MHz 0.8 MHz 0.4 Limits Unit Min. Typ. Max. ...

Page 91

... V DD Machine cycle )/2 IN – – – – – – – – – – – – – MITSUBISHI MICROCOMPUTERS 4513/4514 Group SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER Limits Min. Typ. Max. 3.0 5.5 0.3V 0. Limits Min. Typ. Max. 20 100 15 50 Mi+1 Unit Unit ...

Page 92

... ROM versions, but they have PROM mode that enables writ- ing to built-in PROM. Table 25 shows the product of built-in PROM version. Figure 49 and 50 show the pin configurations of built-in PROM versions. Table 25 Product of built-in PROM version PROM size Product ( 10 bits) M34513E4SP/FP 4096 words M34513E8FP 8192 words M34514E8FP 8192 words ...

Page 93

... Figure 52 before using is recom- mended (Products shipped in blank: PROM contents is not written in factory when shipped). MITSUBISHI MICROCOMPUTERS 4513/4514 Group SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER Table 26 Programming adapters Microcomputer M34513E4SP M34513E4FP, M34513E8FP M34514E8FP Address 0000 ...

Page 94

... M34513M2-XXXSP 27C256 0000 16 Low-order 2.00K 5-bit data 07FF 16 2.00K 4000 16 High-order 5-bit data 47FF 16 7FFF of low-order and high-order 5-bit data. MITSUBISHI MICROCOMPUTERS 4513/4514 Group Mask ROM number Date: Section head signature signature Supervisor officer ) M34513M2-XXXFP (hexadecimal notation) 27C512 0000 16 2.00K 07FF ...

Page 95

... Low-order 4.00K 5-bit data 0FFF 16 4.00K 4000 16 High-order 5-bit data 4FFF 16 7FFF 16 of low-order and high-order 5-bit data. MITSUBISHI MICROCOMPUTERS 4513/4514 Group Mask ROM number Date: Section head signature signature Supervisor officer ) M34513M4-XXXFP (hexadecimal notation) 27C512 0000 16 4.00K 0FFF ...

Page 96

... TEL ( 27C256 0000 16 Low-order 6.00K 5-bit data 17FF 16 6.00K 4000 16 High-order 5-bit data 57FF 16 7FFF 16 of low-order and high-order 5-bit data. MITSUBISHI MICROCOMPUTERS 4513/4514 Group Mask ROM number Date: Section head signature signature Supervisor officer ) (hexadecimal notation) 27C512 0000 16 6.00K 17FF 16 ...

Page 97

... TEL ( 27C256 0000 16 Low-order 8.00K 5-bit data 1FFF 16 8.00K 4000 16 High-order 5-bit data 5FFF 16 7FFF 16 of low-order and high-order 5-bit data. MITSUBISHI MICROCOMPUTERS 4513/4514 Group Mask ROM number Date: Section head signature signature Supervisor officer ) (hexadecimal notation) 27C512 0000 16 8.00K 1FFF 16 ...

Page 98

... TEL ( 27C256 0000 16 Low-order 6.00K 5-bit data 17FF 16 6.00K 4000 16 High-order 5-bit data 57FF 16 7FFF 16 of low-order and high-order 5-bit data. MITSUBISHI MICROCOMPUTERS 4513/4514 Group Mask ROM number Date: Section head signature signature Supervisor officer ) (hexadecimal notation) 27C512 0000 16 6.00K 17FF 16 ...

Page 99

... TEL ( 27C256 0000 16 Low-order 8.00K 5-bit data 1FFF 16 8.00K 4000 16 High-order 5-bit data 5FFF 16 7FFF 16 of low-order and high-order 5-bit data. MITSUBISHI MICROCOMPUTERS 4513/4514 Group Mask ROM number Date: Section head signature signature Supervisor officer ) (hexadecimal notation) 27C512 0000 16 8.00K 1FFF 16 ...

Page 100

... SHRINK DIP) MARK SPECIFICATION FORM Please choose one of the marking types below (A, B, C), and enter the Mitsubishi IC catalog name and the special mark (if needed). A. Standard Mitsubishi Mark Customer’s Parts Number + Mitsubishi catalog name 32 1 Note1 : The mark field should be written right aligned. ...

Page 101

... LQFP) MARK SPECIFICATION FORM Please choose one of the marking types below (A, B), and enter the Mitsubishi catalog name and the special mark (if needed). A. Standard Mitsubishi Mark 24 25 Mitsubishi lot number (4-digit or 5-digit Customer’s Parts Number + Mitsubishi catalog name ...

Page 102

... SHRINK SOP) MARK SPECIFICATION FORM Please choose one of the marking types below (A, B, C), and enter the Mitsubishi catalog name and the special mark (if needed). A. Standard Mitsubishi Mark 42 Mitsubishi lot number (6-digit or 7-digit Customer’s Parts Number + Mitsubishi catalog name ...

Page 103

... SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER Weight(g) Lead Material 2.2 Alloy 42/Cu Alloy Weight(g) Lead Material Alloy Detail F MITSUBISHI MICROCOMPUTERS 4513/4514 Group Plastic 32pin 400mil SDIP Dimension in Millimeters Symbol Min Nom Max A – – 5.08 0.51 – – – 3.8 – 0.35 ...

Page 104

... EIAJ Package Code JEDEC Code SSOP42-P-450-0.80 – 104 SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER Weight(g) Lead Material 0.63 Alloy 42/Cu Alloy Detail F MITSUBISHI MICROCOMPUTERS 4513/4514 Group Plastic 42pin 450mil SSOP Recommended Mount Pad Dimension in Millimeters Symbol Min Nom Max A – – .05 – – – – ...

Page 105

... These materials are intended as a reference to assist our customers in the selection of the Mitsubishi semiconductor product best suited to the customer’s application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Mitsubishi Electric Corporation or a third party. ...

Page 106

REVISION DESCRIPTION LIST Rev. No. 1.0 First Edition 4513/4514 GROUP DATA SHEET Revision Description (1/1) Rev. date 980807 ...

Related keywords