SC4524DSETRT Semtech, SC4524DSETRT Datasheet - Page 13

no-image

SC4524DSETRT

Manufacturer Part Number
SC4524DSETRT
Description
IC, DC-DC CONV, 2MHz, 8-SOIC
Manufacturer
Semtech
Series
-r
Type
Step-Down (Buck), PWM - Current Moder
Datasheets

Specifications of SC4524DSETRT

Primary Input Voltage
30V
No. Of Outputs
1
Output Voltage
30V
Output Current
2A
No. Of Pins
8
Operating Temperature Range
-40°C To +85°C
Switching Frequency Max
2MHz
Package / Case
8-SOIC
Rohs Compliant
Yes
Internal Switch(s)
Yes
Synchronous Rectifier
No
Number Of Outputs
1
Voltage - Output
1 V ~ 17.28 V
Current - Output
2A
Frequency - Switching
300kHz ~ 1.3MHz
Voltage - Input
3 V ~ 18 V
Operating Temperature
-40°C ~ 105°C
Mounting Type
Surface Mount
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
D
D
C
C
O
O
20
20
+
+
D ⋅
D ⋅
O
O
=
=
I
I
1
1
V
V
O
O
L
L
+
+
V
V
O
O
V
V
0 .
0 .
+
+
I
I
%
%
 
 
V
V
D
D
O
O
F
F
V
V
O
O
I
I
+
+
 
 
Applications Information (Cont.)
Figures 6(b) and 6(c). Methods of Bootstrapping the
SC4524D
Loop Compensation
The goal of compensation is to shape the frequency
response of the converter so as to achieve high DC
accuracy and fast transient response while maintaining
loop stability.
IN
IN
D
D
O
O
V
V
SW
SW
V
V
ESR
ESR
I
I
D
D
V
V
)
)
O
O
V
V
D
D
)
)
F
F
D
D
1 (
1 (
CESAT
CESAT
FB
FB
1
1
L
L
F
F
SW
SW
1 (
1 (
1
1
SW
SW
+
+
1 (
1 (
REF
REF
) D
) D
8
8
Figure 7. Block diagram of control loops
VIN
VIN
) D
) D
F
F
+
+
) D
) D
-
-
CONTROLLER AND SCHOTTKY DIODE
CONTROLLER AND SCHOTTKY DIODE
SW
SW
1
1
EA
EA
R
R
R
R
D
D
D
D
L
L
L
L
I
I
I
I
C
C
D
D
D
D
D
D
D
D
C
C
C5
C5
R7
R7
RMS
RMS
RMS
RMS
4
4
4
4
1
1
1
1
I
I
V
V
I
I
V
V
IN
IN
IN
IN
D4 is either a pn juntion diode or a Schottky diode
C
C
=
=
=
=
L
L
L
L
=
=
=
=
O
O
O
O
=
=
=
=
O
O
COMP
COMP
IN
=
=
=
=
IN
_
_
_
_
>
>
>
>
V
V
V
V
R
R
R
R
depending on the operating temperature.
=
=
=
=
CIN
CIN
CIN
CIN
V (
V (
V (
V (
 
 
Vramp
Vramp
IN
IN
IN
IN
SC4524D
Vc
Vc
6
6
6
6
V (
V (
V (
V (
4
4
4
4
SC4524D
D
D
D
D
D1
D1
O
O
20
20
20
20
O
O
+
+
+
+
D ⋅
D ⋅
D ⋅
D ⋅
O
O
O
O
GND
BST
BST
=
=
=
=
I
I
I
I
1
1
1
1
V
V
V
V
GND
L
L
L
L
+
+
+
+
V
V
R
R
C
C
C
C
G
G
R
R
C8
C8
A
A
V
V
A
A
C
C
C
C
O
O
CA
CA
O
O
V
V
V
V
V
V
V
V
0 .
0 .
+
+
I
I
MODULATOR
MODULATOR
0 .
0 .
+
+
%
%
%
%
I
I
V
V
D
D
D
D
O
O
O
O
V
V
F
F
F
F
V
V
V
V
7
7
7
7
O
O
5
5
o
o
c
c
PWM
PWM
5
5
O
O
C
C
C
C
8
8
8
8
I
I
I
I
+
+
+
+
 
 
 
 
IN
IN
IN
IN
O
O
PWM
PWM
V
V
V
V
SW
SW
SW
SW
D
D
D
D
O
O
V
V
V
V
ESR
ESR
ESR
ESR
=
=
=
=
=
=
=
=
=
=
SW
SW
I
I
I
I
=
=
=
=
=
=
=
=
D
D
V
V
D
D
)
)
)
)
V
V
O
O
O
O
V
V
V
V
(b)
(b)
(C)
D
D
D
D
)
)
)
)
10
10
. 0
. 0
1 (
1 (
F
F
F
F
2
2
D
D
2
2
1 (
1 (
D
D
2
2
2
2
1 (
1 (
Rs
Rs
CESAT
CESAT
CESAT
CESAT
1
1
1
1
L
L
L
L
F
F
F
F
g
g
SW
SW
SW
SW
⋅ π
⋅ π
1 (
1 (
1 (
1 (
π
π
20
20
20
20
28
28
⋅ π
⋅ π
π
π
1
1
SW
SW
SW
SW
+
+
1
1
+
+
+
+
G
G
m
m
10
10
1 (
1 (
1 (
1 (
A
A
20
20
F
F
F
F
C
C
CA
CA
D4
1
1
Io
Io
1
1
16
16
600
600
) D
) D
/ s
/ s
1 Z
1 Z
P
P
) D
) D
8
8
8
8
1
1
R
R
15
15
) D
) D
) D
) D
log
log
log
log
10
10
D 2
D 2
20
20
D2
R
R
R
R
G
G
9 .
9 .
F
F
F
F
R
R
) D
) D
) D
) D
ω
ω
SW
SW
10
10
7
7
7
7
C1
SW
SW
SW
SW
PWM
PWM
S
S
p
p
1
1
1
1
 
 
C1
10
10
1 ( )
1 ( )
3
3
,
,
G
G
28
28
D1
3
3
1
1
1 (
1 (
CA
CA
=
=
1
1
C
C
C
C
3
3
1
1
+
+
22
22
22
22
O
O
O
O
L1
L1
R
R
+
+
R
R
R
R
C
C
C
C
G
G
C
C
C
C
6
6
A
A
A
A
/ s
/ s
V
V
V
V
22
22
 
 
 
 
Co
Co
Resr
Resr
S
S
1 .
1 .
7
7
o
o
c
c
PWM
PWM
7
7
C
C
C
C
5
5
R s
R s
8
8
5
5
8
8
.
.
1 .
1 .
1
1
k 3
k 3
VOUT>8V
ω
ω
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
VOUT
1 .
1 .
2
2
ESR
ESR
n
n
10
10
ω
ω
10
10
. 0
. 0
1 (
1 (
10
10
π
π
2
2
2
2
2
2
2
2
Q
Q
g
g
F
F
p
p
10
10
⋅ π
⋅ π
C
C
π
π
1
1
20
20
20
20
28
28
⋅ π
⋅ π
π
π
G
G
+
+
+
+
m
m
C
C
10
10
A
A
3
3
20
20
F
F
F
F
O
O
3
3
C
C
C
C
Vo
Vo
CA
CA
1
1
1
1
16
16
600
600
s
s
/ s
/ s
1 Z
1 Z
P
P
3
3
)
)
R4
R4
R6
R6
R
R
=
=
1
1
O
O
R
R
2
2
15
15
log
log
log
log
10
10
20
20
1
1
C
C
2
2
=
=
R
R
R
R
. 0
. 0
G
G
9 .
9 .
/
/
R
R
ω
ω
O
O
⋅ π
⋅ π
10
10
7
7
7
7
12
12
ω
ω
PWM
PWM
V
V
S
S
p
p
V
V
45
45
 
 
,
,
FB
FB
10
10
1 ( )
1 ( )
O
O
3
3
2
2
n
n
,
,
G
G
28
28
80
80
pF
pF
)
)
3
3
1
1
nF
nF
1 (
1 (
=
=
 
 
CA
CA
1
1
3
3
1
1
+
+
The block diagram in Figure 7 shows the control loops of a
buck converter with the SC4524D. The inner loop (current
loop) consists of a current sensing resistor (R
a current amplifier (CA) with gain (G
loop (voltage loop) consists of an error amplifier (EA), a
PWM modulator, and a LC filter.
Since the current loop is internally closed, the remaining
task for the loop compensation is to design the voltage
compensator (C
For a converter with switching frequency F
inductance L
control (V
given by:
This transfer function has a finite DC gain
an ESR zero F
a dominant low-frequency pole F
and double poles at half the switching frequency.
Including the voltage divider (R
feedback transfer function is found and plotted in Figure
8 as the converter gain.
Since the converter gain has only one dominant pole at
low frequency, a simple Type-2 compensation network
is sufficient for voltage loop compensation. As shown in
Figure 8, the voltage compensator has a low frequency
integrator pole, a zero at F
at F
frequency. The zero is introduced to compensate the
excessive phase lag at the loop gain crossover due to the
22
22
22
22
R
R
+
+
10
10
6
6
/ s
/ s
22
22
S
S
1 .
1 .
R s
R s
.
.
1 .
1 .
1
1
1
1
k 3
k 3
P1
ω
ω
3
3
1 .
1 .
2
2
ESR
ESR
. The integrator is used to boost the gain at low
R
R
R
R
n
n
R
R
C
C
C
C
C
C
C
C
10
10
G
G
G
G
R
R
ω
ω
C
C
C
C
C
C
C
C
A
A
A
A
A
A
A
A
ω
ω
V
V
V
V
V
V
V
V
10
10
π
π
22
22
Q
Q
7
7
7
7
o
o
o
o
c
c
PWM
PWM
PWM
PWM
7
7
7
7
C
C
C
C
C
C
C
C
5
5
5
5
8
8
8
8
c
c
Z
Z
5
5
5
5
8
8
8
8
p
p
F
F
10
10
C
C
1
1
+
+
C
C
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
3
3
=
=
C
O
O
3
3
C
C
) to output (V
s
s
)
)
10
10
3
3
. 0
. 0
1 (
1 (
10
10
10
10
R
R
. 0
. 0
1 (
1 (
R
R
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
=
=
O
O
2
2
g
g
g
g
1
1
⋅ π
⋅ π
ESR
ESR
C
C
⋅ π
⋅ π
1
=
=
Z
2
2
π
π
20
20
20
20
28
28
⋅ π
⋅ π
⋅ π
⋅ π
π
π
π
π
π
π
20
20
20
20
28
28
. 0
. 0
/
/
, output capacitance C
G
G
G
G
+
+
+
+
m
m
m
m
10
10
10
10
1
1
A
A
at
O
O
⋅ π
⋅ π
A
A
20
20
20
20
F
F
F
F
F
F
F
F
12
12
ω
ω
V
V
6
6
C
C
C
C
V
V
CA
CA
CA
CA
1
1
1
1
16
16
600
600
45
45
1
1
1
1
16
16
600
600
/ s
/ s
/ s
/ s
C
C
1 Z
1 Z
P
P
5
1 Z
1 Z
P
P
,
,
FB
FB
, R
2
2
n
n
1
1
1
1
O
O
R
R
R
R
15
15
O
O
15
15
80
80
log
log
log
log
log
log
log
log
10
10
10
10
pF
pF
20
20
20
20
)
)
1
1
R
R
R
R
R
R
R
R
3
3
nF
nF
G
G
G
G
9 .
9 .
9 .
9 .
R
R
R
R
12
12
12
12
ω
ω
ω
ω
 
 
7
,
,
0 .
0 .
3 .
3 .
, and C
10
10
7
7
7
7
7
7
10
10
7
7
PWM
PWM
PWM
PWM
S
S
p
p
S
S
p
p
 
 
 
 
10
10
10
10
10
10
1 ( )
1 ( )
1 ( )
1 ( )
3
3
,
,
3
3
,
,
G
G
28
28
G
G
28
28
3
3
3
3
1
1
1
1
1 (
1 (
=
=
=
=
=
=
1 (
1 (
CA
CA
CA
CA
1
1
1
1
1
1
3
3
3
3
1
1
1
1
3
3
O
+
+
+
+
15
15
22
22
22
22
22
22
22
22
R
R
) transfer function in Figure 7 is
R
R
+
+
+
+
ω
ω
6
6
6
6
/ s
/ s
8
/ s
/ s
22
22
22
22
S
S
).
22
22
S
S
Z1
1 .
1 .
1 .
1 .
R s
R s
R s
R s
Z
Z
9 .
9 .
.
.
1 .
1 .
1
1
.
.
1 .
1 .
1
1
, and a high frequency pole
k 3
k 3
k 3
k 3
ω
ω
ω
ω
=
=
1 .
1 .
1 .
1 .
dB
dB
2
2
2
2
ESR
ESR
ESR
ESR
n
n
n
n
10
10
10
10
10
10
ω
ω
ω
ω
R
R
π
π
π
π
10
10
10
10
Q
Q
Q
Q
4
p
p
F
F
F
F
10
10
p
p
10
10
ESR
ESR
C
C
C
C
P
1
1
1
1
+
+
+
+
C
C
C
C
1
1
and R
3
3
3
3
at
O
O
O
O
3
3
3
3
C
C
C
C
6
6
s
s
C
C
s
s
)
)
3
3
3
3
)
)
R
R
R
R
=
=
=
=
O
O
O
O
O
2
2
2
2
O
O
1
1
CA
1
1
C
C
C
C
=
=
2
2
2
2
1
1
=
=
3
3
. 0
. 0
. 0
. 0
and loading R, the
/
/
/
/
,
,
O
O
⋅ π
⋅ π
O
O
=18.5). The outer
⋅ π
⋅ π
0 .
0 .
12
12
12
12
3 .
3 .
ω
ω
V
V
V
V
ω
ω
6
V
V
V
V
45
45
45
45
,
,
,
,
), the control to
SC4524D
FB
FB
FB
FB
2
2
n
n
n
n
O
O
O
O
2
2
80
80
80
80
pF
pF
pF
pF
)
)
)
)
nF
nF
nF
nF
s
=
=
 
 
 
 
=5.5mW) and
15
15
10
10
10
10
SW
(8)
9 .
9 .
, output
1
1
1
1
3
3
3
3
dB
dB
ω
ω
ω
ω
22
22
22
22
Z
Z
Z
Z
=
=
=
=
13
10
10
10
10
R
R
R
R
ESR
ESR
ESR
ESR
1
1
1
1
6
6
6
6
C
C
C
C
O
O
O
O
1
1
1
1
. 3
. 3
3
3
,
,
,
,
0 .
0 .
0 .
0 .
3 .
3 .

Related parts for SC4524DSETRT