ATMEGA8535-16PU Atmel, ATMEGA8535-16PU Datasheet - Page 198

IC AVR MCU 8K 16MHZ 5V 40DIP

ATMEGA8535-16PU

Manufacturer Part Number
ATMEGA8535-16PU
Description
IC AVR MCU 8K 16MHZ 5V 40DIP
Manufacturer
Atmel
Series
AVR® ATmegar

Specifications of ATMEGA8535-16PU

Core Processor
AVR
Core Size
8-Bit
Speed
16MHz
Connectivity
I²C, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, POR, PWM, WDT
Number Of I /o
32
Program Memory Size
8KB (4K x 16)
Program Memory Type
FLASH
Eeprom Size
512 x 8
Ram Size
512 x 8
Voltage - Supply (vcc/vdd)
4.5 V ~ 5.5 V
Data Converters
A/D 8x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
40-DIP (0.600", 15.24mm)
Processor Series
ATMEGA8x
Core
AVR8
Data Bus Width
8 bit
Data Ram Size
512 B
Interface Type
2-Wire, SPI, USART
Maximum Clock Frequency
16 MHz
Number Of Programmable I/os
32
Number Of Timers
3
Operating Supply Voltage
4.5 V to 5.5 V
Maximum Operating Temperature
+ 85 C
Mounting Style
Through Hole
3rd Party Development Tools
EWAVR, EWAVR-BL
Development Tools By Supplier
ATAVRDRAGON, ATSTK500, ATSTK600, ATAVRISP2, ATAVRONEKIT
Minimum Operating Temperature
- 40 C
On-chip Adc
10 bit, 8 Channel
A/d Inputs
8-Channel, 10-Bit
Cpu Speed
16 MIPS
Eeprom Memory
512 Bytes
Input Output
32
Interface
SPI/TWI/USART
Memory Type
Flash
Number Of Bits
8
Package Type
40-pin PDIP
Programmable Memory
8K Bytes
Timers
2-8-bit, 1-16-bit
Voltage, Range
4.5-5.5 V
Controller Family/series
AVR MEGA
No. Of I/o's
32
Eeprom Memory Size
512Byte
Ram Memory Size
512Byte
Rohs Compliant
Yes
For Use With
ATSTK600 - DEV KIT FOR AVR/AVR32770-1007 - ISP 4PORT ATMEL AVR MCU SPI/JTAGATAVRISP2 - PROGRAMMER AVR IN SYSTEMATSTK500 - PROGRAMMER AVR STARTER KIT
Lead Free Status / RoHS Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATMEGA8535-16PU
Manufacturer:
ATMEL
Quantity:
1 500
Part Number:
ATMEGA8535-16PU
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Slave Transmitter Mode
198
ATmega8535(L)
In the Slave Transmitter mode, a number of data bytes are transmitted to a Master
Receiver (see Figure 92). All the status codes mentioned in this section assume that the
prescaler bits are zero or are masked to zero.
Figure 92. Data Transfer in Slave Transmitter Mode
To initiate the Slave Transmitter mode, TWAR and TWCR must be initialized as follows:
The upper seven bits are the address to which the Two-wire Serial Interface will respond
when addressed by a Master. If the LSB is set, the TWI will respond to the general call
address (0x00), otherwise it will ignore the general call address.
TWEN must be written to one to enable the TWI. The TWEA bit must be written to one
to enable the acknowledgement of the device’s own slave address or the general call
address. TWSTA and TWSTO must be written to zero.
When TWAR and TWCR have been initialized, the TWI waits until it is addressed by its
own slave address (or the general call address if enabled) followed by the data direction
bit. If the direction bit is “1” (read), the TWI will operate in ST mode, otherwise SR mode
is entered. After its own slave address and the write bit have been received, the TWINT
Flag is set and a valid status code can be read from TWSR. The status code is used to
determine the appropriate software action. The appropriate action to be taken for each
status code is detailed in Table 78. The Slave Transmitter mode may also be entered if
arbitration is lost while the TWI is in the Master mode (see state 0xB0).
If the TWEA bit is written to zero during a transfer, the TWI will transmit the last byte of
the transfer. State 0xC0 or state 0xC8 will be entered, depending on whether the Master
Receiver transmits a NACK or ACK after the final byte. The TWI is switched to the not
addressed Slave mode, and will ignore the Master if it continues the transfer. Thus the
Master Receiver receives all “1” as serial data. State 0xC8 is entered if the Master
demands additional data bytes (by transmitting ACK), even though the Slave has trans-
mitted the last byte (TWEA zero and expecting NACK from the Master).
While TWEA is zero, the TWI does not respond to its own slave address. However, the
Two-wire Serial Bus is still monitored and address recognition may resume at any time
SDA
SCL
TWAR
Value
TWCR
Value
TRANSMITTER
Device 1
SLAVE
TWINT
TWA6
0
Device 2
RECEIVER
MASTER
TWEA
TWA5
1
TWSTA
Device 3
TWA4
Device’s Own Slave Address
0
TWSTO
TWA3
........
0
Device n
TWWC
TWA2
0
V
CC
TWEN
TWA1
1
R1
TWA0
0
2502K–AVR–10/06
R2
TWGCE
TWIE
X

Related parts for ATMEGA8535-16PU