LPC1759FBD80 NXP Semiconductors, LPC1759FBD80 Datasheet - Page 13

The LPC1759 is a Cortex-M3 microcontroller for embedded applications featuring a high level of integration and low power consumption at frequencies of 120 MHz

LPC1759FBD80

Manufacturer Part Number
LPC1759FBD80
Description
The LPC1759 is a Cortex-M3 microcontroller for embedded applications featuring a high level of integration and low power consumption at frequencies of 120 MHz
Manufacturer
NXP Semiconductors
Datasheet

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
LPC1759FBD80
Manufacturer:
MICROCHIP
Quantity:
12 000
Part Number:
LPC1759FBD80
Manufacturer:
NXP/恩智浦
Quantity:
20 000
Part Number:
LPC1759FBD80
0
Part Number:
LPC1759FBD80,551
Manufacturer:
LT
Quantity:
375
Part Number:
LPC1759FBD80,551
Manufacturer:
NXP Semiconductors
Quantity:
10 000
Part Number:
LPC1759FBD80,551
Manufacturer:
NXP/恩智浦
Quantity:
20 000
NXP Semiconductors
7. Functional description
LPC1759_58_56_54_52_51
Product data sheet
7.1 Architectural overview
7.2 ARM Cortex-M3 processor
7.3 On-chip flash program memory
7.4 On-chip SRAM
7.5 Memory Protection Unit (MPU)
The ARM Cortex-M3 includes three AHB-Lite buses: the system bus, the I-code bus, and
the D-code bus (see
system bus and are used similarly to Tightly Coupled Memory (TCM) interfaces: one bus
dedicated for instruction fetch (I-code) and one bus for data access (D-code). The use of
two core buses allows for simultaneous operations if concurrent operations target different
devices.
The LPC1759/58/56/54/52/51 use a multi-layer AHB matrix to connect the ARM
Cortex-M3 buses and other bus masters to peripherals in a flexible manner that optimizes
performance by allowing peripherals that are on different slaves ports of the matrix to be
accessed simultaneously by different bus masters.
The ARM Cortex-M3 is a general purpose, 32-bit microprocessor, which offers high
performance and very low power consumption. The ARM Cortex-M3 offers many new
features, including a Thumb-2 instruction set, low interrupt latency, hardware divide,
interruptable/continuable multiple load and store instructions, automatic state save and
restore for interrupts, tightly integrated interrupt controller with wakeup interrupt controller,
and multiple core buses capable of simultaneous accesses.
Pipeline techniques are employed so that all parts of the processing and memory systems
can operate continuously. Typically, while one instruction is being executed, its successor
is being decoded, and a third instruction is being fetched from memory.
The ARM Cortex-M3 processor is described in detail in the Cortex-M3 Technical
Reference Manual that can be found on official ARM website.
The LPC1759/58/56/54/52/51 contain up to 512 kB of on-chip flash memory. A new
two-port flash accelerator maximizes performance for use with the two fast AHB-Lite
buses.
The LPC1759/58/56/54/52/51 contain a total of up to 64 kB on-chip static RAM memory.
This includes the main 32/16/8 kB SRAM, accessible by the CPU and DMA controller on a
higher-speed bus, and up to two additional 16 kB each SRAM blocks situated on a
separate slave port on the AHB multilayer matrix.
This architecture allows CPU and DMA accesses to be spread over three separate RAMs
that can be accessed simultaneously.
The LPC1759/58/56/54/52/51 have a Memory Protection Unit (MPU) which can be used
to improve the reliability of an embedded system by protecting critical data within the user
application.
All information provided in this document is subject to legal disclaimers.
Figure
Rev. 7 — 29 March 2011
1). The I-code and D-code core buses are faster than the
LPC1759/58/56/54/52/51
32-bit ARM Cortex-M3 microcontroller
© NXP B.V. 2011. All rights reserved.
13 of 74

Related parts for LPC1759FBD80