ATmega32 Atmel Corporation, ATmega32 Datasheet - Page 296

no-image

ATmega32

Manufacturer Part Number
ATmega32
Description
Manufacturer
Atmel Corporation
Datasheets

Specifications of ATmega32

Flash (kbytes)
32 Kbytes
Pin Count
44
Max. Operating Frequency
16 MHz
Cpu
8-bit AVR
# Of Touch Channels
16
Hardware Qtouch Acquisition
No
Max I/o Pins
32
Ext Interrupts
3
Usb Speed
No
Usb Interface
No
Spi
1
Twi (i2c)
1
Uart
1
Graphic Lcd
No
Video Decoder
No
Camera Interface
No
Adc Channels
8
Adc Resolution (bits)
10
Adc Speed (ksps)
15
Analog Comparators
1
Resistive Touch Screen
No
Temp. Sensor
No
Crypto Engine
No
Sram (kbytes)
2
Eeprom (bytes)
1024
Self Program Memory
YES
Dram Memory
No
Nand Interface
No
Picopower
No
Temp. Range (deg C)
-40 to 85
I/o Supply Class
2.7 to 5.5
Operating Voltage (vcc)
2.7 to 5.5
Fpu
No
Mpu / Mmu
no / no
Timers
3
Output Compare Channels
4
Input Capture Channels
1
Pwm Channels
4
32khz Rtc
Yes
Calibrated Rc Oscillator
Yes

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATmega32-16AC
Manufacturer:
COMPAL
Quantity:
500
Part Number:
ATmega32-16AC
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega32-16AI
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega32-16AJ
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega32-16AQ
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega32-16AQR
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega32-16AU
Manufacturer:
ATMEL
Quantity:
20 000
Company:
Part Number:
ATmega32-16AU
Quantity:
5 600
Company:
Part Number:
ATmega32-16AU
Quantity:
21 222
Part Number:
ATmega32-16PI
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Part Number:
ATmega32-16PU
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
ATmega32
Typical
Characteristics
Active Supply Current
2503Q–AVR–02/11
The following charts show typical behavior. These figures are not tested during manufacturing.
All current consumption measurements are performed with all I/O pins configured as inputs and
with internal pull-ups enabled. A square wave generator with rail-to-rail output is used as clock
source.
The power consumption in Power-down mode is independent of clock selection.
The current consumption is a function of several factors such as: operating voltage, operating
frequency, loading of I/O pins, switching rate of I/O pins, code executed and ambient tempera-
ture. The dominating factors are operating voltage and frequency.
The current drawn from capacitive loaded pins may be estimated (for one pin) as C
C
The parts are characterized at frequencies higher than test limits. Parts are not guaranteed to
function properly at frequencies higher than the ordering code indicates.
The difference between current consumption in Power-down mode with Watchdog Timer
enabled and Power-down mode with Watchdog Timer disabled represents the differential cur-
rent drawn by the Watchdog Timer.
Figure 148. Active Supply Current vs. Frequency (0.1 - 1.0MHz)
L
= load capacitance, V
2.5
1.5
0.5
2
1
0
0
0.1
0.2
CC
= operating voltage and f = average switching frequency of I/O pin.
0.3
0.4
Frequency (MHz)
0.5
0.6
0.7
0.8
0.9
ATmega32(L)
1
5.5V
5.0V
4.5V
4.0V
3.6V
3.3V
2.7V
L
*
V
CC
*f where
296

Related parts for ATmega32