ATmega32 Atmel Corporation, ATmega32 Datasheet - Page 272

no-image

ATmega32

Manufacturer Part Number
ATmega32
Description
Manufacturer
Atmel Corporation
Datasheets

Specifications of ATmega32

Flash (kbytes)
32 Kbytes
Pin Count
44
Max. Operating Frequency
16 MHz
Cpu
8-bit AVR
# Of Touch Channels
16
Hardware Qtouch Acquisition
No
Max I/o Pins
32
Ext Interrupts
3
Usb Speed
No
Usb Interface
No
Spi
1
Twi (i2c)
1
Uart
1
Graphic Lcd
No
Video Decoder
No
Camera Interface
No
Adc Channels
8
Adc Resolution (bits)
10
Adc Speed (ksps)
15
Analog Comparators
1
Resistive Touch Screen
No
Temp. Sensor
No
Crypto Engine
No
Sram (kbytes)
2
Eeprom (bytes)
1024
Self Program Memory
YES
Dram Memory
No
Nand Interface
No
Picopower
No
Temp. Range (deg C)
-40 to 85
I/o Supply Class
2.7 to 5.5
Operating Voltage (vcc)
2.7 to 5.5
Fpu
No
Mpu / Mmu
no / no
Timers
3
Output Compare Channels
4
Input Capture Channels
1
Pwm Channels
4
32khz Rtc
Yes
Calibrated Rc Oscillator
Yes

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATmega32-16AC
Manufacturer:
COMPAL
Quantity:
500
Part Number:
ATmega32-16AC
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega32-16AI
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega32-16AJ
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega32-16AQ
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega32-16AQR
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega32-16AU
Manufacturer:
ATMEL
Quantity:
20 000
Company:
Part Number:
ATmega32-16AU
Quantity:
5 600
Company:
Part Number:
ATmega32-16AU
Quantity:
21 222
Part Number:
ATmega32-16PI
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Part Number:
ATmega32-16PU
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Data Polling EEPROM
2503Q–AVR–02/11
ten. Note that the entire page is written simultaneously and any address within the page can be
used for polling. Data polling of the Flash will not work for the value $FF, so when programming
this value, the user will have to wait for at least t
a chip erased device contains $FF in all locations, programming of addresses that are meant to
contain $FF, can be skipped. See
When a new byte has been written and is being programmed into EEPROM, reading the
address location being programmed will give the value $FF. At the time the device is ready for a
new byte, the programmed value will read correctly. This is used to determine when the next
byte can be written. This will not work for the value $FF, but the user should have the following in
mind: As a chip erased device contains $FF in all locations, programming of addresses that are
meant to contain $FF, can be skipped. This does not apply if the EEPROM is re-programmed
without chip erasing the device. In this case, data polling cannot be used for the value $FF, and
the user will have to wait at least t
for t
Table 114. Minimum Wait Delay before Writing the Next Flash or EEPROM Location
Figure 137. SPI Serial Programming Waveforms
Symbol
t
t
t
t
WD_FLASH
WD_EEPROM
WD_ERASE
WD_FUSE
WD_EEPROM
SERIAL DATA OUTPUT
SERIAL CLOCK INPUT
SERIAL DATA INPUT
value.
SAMPLE
(MOSI)
(MISO)
(SCK)
MSB
MSB
Minimum Wait Delay
4.5ms
9.0ms
9.0ms
4.5ms
Table 114
WD_EEPROM
for t
before programming the next byte. See
WD_FLASH
WD_FLASH
before programming the next page. As
value
ATmega32(L)
LSB
LSB
Table 114
272

Related parts for ATmega32