ATmega32 Atmel Corporation, ATmega32 Datasheet - Page 267

no-image

ATmega32

Manufacturer Part Number
ATmega32
Description
Manufacturer
Atmel Corporation
Datasheets

Specifications of ATmega32

Flash (kbytes)
32 Kbytes
Pin Count
44
Max. Operating Frequency
16 MHz
Cpu
8-bit AVR
# Of Touch Channels
16
Hardware Qtouch Acquisition
No
Max I/o Pins
32
Ext Interrupts
3
Usb Speed
No
Usb Interface
No
Spi
1
Twi (i2c)
1
Uart
1
Graphic Lcd
No
Video Decoder
No
Camera Interface
No
Adc Channels
8
Adc Resolution (bits)
10
Adc Speed (ksps)
15
Analog Comparators
1
Resistive Touch Screen
No
Temp. Sensor
No
Crypto Engine
No
Sram (kbytes)
2
Eeprom (bytes)
1024
Self Program Memory
YES
Dram Memory
No
Nand Interface
No
Picopower
No
Temp. Range (deg C)
-40 to 85
I/o Supply Class
2.7 to 5.5
Operating Voltage (vcc)
2.7 to 5.5
Fpu
No
Mpu / Mmu
no / no
Timers
3
Output Compare Channels
4
Input Capture Channels
1
Pwm Channels
4
32khz Rtc
Yes
Calibrated Rc Oscillator
Yes

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATmega32-16AC
Manufacturer:
COMPAL
Quantity:
500
Part Number:
ATmega32-16AC
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega32-16AI
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega32-16AJ
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega32-16AQ
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega32-16AQR
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega32-16AU
Manufacturer:
ATMEL
Quantity:
20 000
Company:
Part Number:
ATmega32-16AU
Quantity:
5 600
Company:
Part Number:
ATmega32-16AU
Quantity:
21 222
Part Number:
ATmega32-16PI
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Part Number:
ATmega32-16PU
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Programming the Lock
Bits
Reading the Fuse and
Lock Bits
Reading the Signature
Bytes
Reading the
Calibration Byte
2503Q–AVR–02/11
The algorithm for programming the Lock bits is as follows (refer to
page 262
1. A: Load Command “0010 0000”.
2. C: Load Data Low Byte. Bit n = “0” programs the Lock bit.
3. Give WR a negative pulse and wait for RDY/BSY to go high.
The Lock bits can only be cleared by executing Chip Erase.
The algorithm for reading the Fuse and Lock bits is as follows (refer to
on page 262
1. A: Load Command “0000 0100”.
2. Set OE to “0”, BS2 to “0” and BS1 to “0”. The status of the Fuse Low bits can now be
3. Set OE to “0”, BS2 to “1” and BS1 to “1”. The status of the Fuse High bits can now be
4. Set OE to “0”, BS2 to “0” and BS1 to “1”. The status of the Lock bits can now be read at
5. Set OE to “1”.
Figure 132. Mapping between BS1, BS2 and the Fuse- and Lock Bits during Read
The algorithm for reading the Signature bytes is as follows (refer to
page 262
1. A: Load Command “0000 1000”.
2. B: Load Address Low Byte ($00 - $02).
3. Set OE to “0”, and BS1 to “0”. The selected Signature byte can now be read at DATA.
4. Set OE to “1”.
The algorithm for reading the Calibration byte is as follows (refer to
page 262
1. A: Load Command “0000 1000”.
2. B: Load Address Low Byte, $00.
3. Set OE to “0”, and BS1 to “1”. The Calibration byte can now be read at DATA.
4. Set OE to “1”.
read at DATA (“0” means programmed).
read at DATA (“0” means programmed).
DATA (“0” means programmed).
for details on Command and Data loading):
for details on Command and Address loading):
for details on Command and Address loading):
for details on Command loading):
Fuse High Byte
Fuse Low Byte
Lock Bits
BS2
0
1
BS1
0
1
“Programming the Flash” on
“Programming the Flash” on
“Programming the Flash” on
ATmega32(L)
“Programming the Flash”
DATA
267

Related parts for ATmega32