ATmega32 Atmel Corporation, ATmega32 Datasheet - Page 18

no-image

ATmega32

Manufacturer Part Number
ATmega32
Description
Manufacturer
Atmel Corporation
Datasheets

Specifications of ATmega32

Flash (kbytes)
32 Kbytes
Pin Count
44
Max. Operating Frequency
16 MHz
Cpu
8-bit AVR
# Of Touch Channels
16
Hardware Qtouch Acquisition
No
Max I/o Pins
32
Ext Interrupts
3
Usb Speed
No
Usb Interface
No
Spi
1
Twi (i2c)
1
Uart
1
Graphic Lcd
No
Video Decoder
No
Camera Interface
No
Adc Channels
8
Adc Resolution (bits)
10
Adc Speed (ksps)
15
Analog Comparators
1
Resistive Touch Screen
No
Temp. Sensor
No
Crypto Engine
No
Sram (kbytes)
2
Eeprom (bytes)
1024
Self Program Memory
YES
Dram Memory
No
Nand Interface
No
Picopower
No
Temp. Range (deg C)
-40 to 85
I/o Supply Class
2.7 to 5.5
Operating Voltage (vcc)
2.7 to 5.5
Fpu
No
Mpu / Mmu
no / no
Timers
3
Output Compare Channels
4
Input Capture Channels
1
Pwm Channels
4
32khz Rtc
Yes
Calibrated Rc Oscillator
Yes

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATmega32-16AC
Manufacturer:
COMPAL
Quantity:
500
Part Number:
ATmega32-16AC
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega32-16AI
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega32-16AJ
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega32-16AQ
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega32-16AQR
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega32-16AU
Manufacturer:
ATMEL
Quantity:
20 000
Company:
Part Number:
ATmega32-16AU
Quantity:
5 600
Company:
Part Number:
ATmega32-16AU
Quantity:
21 222
Part Number:
ATmega32-16PI
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Part Number:
ATmega32-16PU
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Data Memory Access
Times
EEPROM Data
Memory
EEPROM Read/Write
Access
2503Q–AVR–02/11
This section describes the general access timing concepts for internal memory access. The
internal data SRAM access is performed in two clk
Figure 10. On-chip Data SRAM Access Cycles
The ATmega32 contains 1024 bytes of data EEPROM memory. It is organized as a separate
data space, in which single bytes can be read and written. The EEPROM has an endurance of at
least 100,000 write/erase cycles. The access between the EEPROM and the CPU is described
in the following, specifying the EEPROM Address Registers, the EEPROM Data Register, and
the EEPROM Control Register.
“Memory Programming” on page 256
in SPI, JTAG, or Parallell Programming mode.
The EEPROM Access Registers are accessible in the I/O space.
The write access time for the EEPROM is given in
the user software detect when the next byte can be written. If the user code contains instructions
that write the EEPROM, some precautions must be taken. In heavily filtered power supplies, V
is likely to rise or fall slowly on Power-up/down. This causes the device for some period of time
to run at a voltage lower than specified as minimum for the clock frequency used. See
ing EEPROM Corruption” on page 22
In order to prevent unintentional EEPROM writes, a specific write procedure must be followed.
Refer to the description of the EEPROM Control Register for details on this.
When the EEPROM is read, the CPU is halted for four clock cycles before the next instruction is
executed. When the EEPROM is written, the CPU is halted for two clock cycles before the next
instruction is executed.
Address
clk
Data
Data
WR
CPU
RD
Compute Address
T1
Memory Access Instruction
contains a detailed description on EEPROM Programming
for details on how to avoid problems in these situations.
Address Valid
CPU
Table
T2
cycles as described in
1. A self-timing function, however, lets
Next Instruction
T3
ATmega32(L)
Figure
10.
“Prevent-
18
CC

Related parts for ATmega32