EP1C3T144C6N Altera, EP1C3T144C6N Datasheet - Page 14

IC CYCLONE FPGA 2910 LE 144-TQFP

EP1C3T144C6N

Manufacturer Part Number
EP1C3T144C6N
Description
IC CYCLONE FPGA 2910 LE 144-TQFP
Manufacturer
Altera
Series
Cyclone®r
Datasheet

Specifications of EP1C3T144C6N

Number Of Logic Elements/cells
2910
Number Of Labs/clbs
291
Total Ram Bits
59904
Number Of I /o
104
Voltage - Supply
1.425 V ~ 1.575 V
Mounting Type
Surface Mount
Operating Temperature
0°C ~ 85°C
Package / Case
144-TQFP, 144-VQFP
Family Name
Cyclone®
Number Of Logic Blocks/elements
2910
# I/os (max)
104
Frequency (max)
405.2MHz
Process Technology
0.13um (CMOS)
Operating Supply Voltage (typ)
1.5V
Logic Cells
2910
Ram Bits
59904
Operating Supply Voltage (min)
1.425V
Operating Supply Voltage (max)
1.575V
Operating Temp Range
0C to 85C
Operating Temperature Classification
Commercial
Mounting
Surface Mount
Pin Count
144
Package Type
TQFP
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Number Of Gates
-
Lead Free Status / Rohs Status
Compliant
Other names
544-1662

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
EP1C3T144C6N
Manufacturer:
ALTERA
Quantity:
250
Part Number:
EP1C3T144C6N
Manufacturer:
Altera
Quantity:
10 000
Part Number:
EP1C3T144C6N
Manufacturer:
ALTERA
0
Part Number:
EP1C3T144C6N
Manufacturer:
ALTERA
Quantity:
20 000
Cyclone Device Handbook, Volume 1
Figure 2–6. LE in Normal Mode
Note to
(1)
2–8
Preliminary
addnsub (LAB Wide)
data1
data2
data3
cin (from cout
of previous LE)
data4
This signal is only allowed in normal mode if the LE is at the end of an adder/subtractor chain.
Figure
(1)
2–6:
Register Feedback
preset/load, synchronous clear, synchronous load, and clock enable
control for the register. These LAB-wide signals are available in all LE
modes. The addnsub control signal is allowed in arithmetic mode.
The Quartus II software, in conjunction with parameterized functions
such as library of parameterized modules (LPM) functions, automatically
chooses the appropriate mode for common functions such as counters,
adders, subtractors, and arithmetic functions. If required, you can also
create special-purpose functions that specify which LE operating mode to
use for optimal performance.
Normal Mode
The normal mode is suitable for general logic applications and
combinatorial functions. In normal mode, four data inputs from the LAB
local interconnect are inputs to a four-input LUT (see
Quartus II Compiler automatically selects the carry-in or the data3
signal as one of the inputs to the LUT. Each LE can use LUT chain
connections to drive its combinatorial output directly to the next LE in the
LAB. Asynchronous load data for the register comes from the data3
input of the LE. LEs in normal mode support packed registers.
4-Input
LUT
Register chain
connection
clock (LAB Wide)
(LAB Wide)
ena (LAB Wide)
aclr (LAB Wide)
sload
(LAB Wide)
sclear
(LAB Wide)
ADATA
ENA
D
ALD/PRE
aload
CLRN
Q
Figure
Altera Corporation
Row, column, and
direct link routing
Row, column, and
direct link routing
Local routing
LUT chain
connection
Register
chain output
2–6). The
May 2008

Related parts for EP1C3T144C6N