ATMEGA1284PR212-MU Atmel, ATMEGA1284PR212-MU Datasheet - Page 29

no-image

ATMEGA1284PR212-MU

Manufacturer Part Number
ATMEGA1284PR212-MU
Description
BUNDLE ATMEGA1284P/RF212 QFN
Manufacturer
Atmel
Datasheet

Specifications of ATMEGA1284PR212-MU

Frequency
2.4GHz
Modulation Or Protocol
802.15.4 Zigbee, 6LoWPAN, ISM
Data Interface
PCB, Surface Mount
Memory Size
128kB Flash, 4kB EEPROM, 16kB RAM
Antenna Connector
PCB, Surface Mount
Package / Case
44-QFN, 32-QFN
Processor Series
ATMEGA128x
Core
AVR8
Data Bus Width
8 bit
Program Memory Type
Flash
Program Memory Size
128 KB
Data Ram Size
16 KB
Development Tools By Supplier
ATAVRRZ541, ATAVRRAVEN, ATAVRRZUSBSTICK, ATAVRISP2, ATAVRRZ201
For Use With
ATSTK600 - DEV KIT FOR AVR/AVR32
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Voltage - Supply
-
Power - Output
-
Operating Temperature
-
Applications
-
Sensitivity
-
Data Rate - Maximum
-
Current - Transmitting
-
Current - Receiving
-
Lead Free Status / Rohs Status
 Details
7.2.3
8059D–AVR–11/09
Clock Source Connections
selectable delays are shown in
dependent as shown in
Table 7-2.
Main purpose of the delay is to keep the AVR in reset until it is supplied with minimum Vcc. The
delay will not monitor the actual voltage and it will be required to select a delay longer than the
Vcc rise time. If this is not possible, an internal or external Brown-Out Detection circuit should be
used. A BOD circuit will ensure sufficient Vcc before it releases the reset, and the time-out delay
can be disabled. Disabling the time-out delay without utilizing a Brown-Out Detection circuit is
not recommended.
The oscillator is required to oscillate for a minimum number of cycles before the clock is consid-
ered stable. An internal ripple counter monitors the oscillator output clock, and keeps the internal
reset active for a given number of clock cycles. The reset is then released and the device will
start to execute. The recommended oscillator start-up time is dependent on the clock type, and
varies from 6 cycles for an externally applied clock to 32K cycles for a low frequency crystal.
The start-up sequence for the clock includes both the time-out delay and the start-up time when
the device starts up from reset. When starting up from Power-save or Power-down mode, Vcc is
assumed to be at a sufficient level and only the start-up time is included.
The pins XTAL1 and XTAL2 are input and output, respectively, of an inverting amplifier which
can be configured for use as an On-chip Oscillator, as shown in
quartz crystal or a ceramic resonator may be used.
C1 and C2 should always be equal for both crystals and resonators. The optimal value of the
capacitors depends on the crystal or resonator in use, the amount of stray capacitance, and the
electromagnetic noise of the environment. For ceramic resonators, the capacitor values given by
the manufacturer should be used.
Figure 7-2.
Typ Time-out (V
4.1 ms
65 ms
0 ms
Number of Watchdog Oscillator Cycles
Crystal Oscillator Connections
CC
= 5.0V)
”Typical Characteristics” on page
Table
C2
C1
Typ Time-out (V
7-2. The frequency of the Watchdog Oscillator is voltage
4.3 ms
69 ms
0 ms
CC
= 3.0V)
334.
XTAL2
XTAL1
GND
Figure 7-2 on page
ATmega1284P
Number of Cycles
8K (8,192)
512
0
29. Either a
29

Related parts for ATMEGA1284PR212-MU