ATMEGA128RFA1-ZU Atmel, ATMEGA128RFA1-ZU Datasheet - Page 172

IC AVR MCU 2.4GHZ XCEIVER 64QFN

ATMEGA128RFA1-ZU

Manufacturer Part Number
ATMEGA128RFA1-ZU
Description
IC AVR MCU 2.4GHZ XCEIVER 64QFN
Manufacturer
Atmel
Series
ATMEGAr

Specifications of ATMEGA128RFA1-ZU

Frequency
2.4GHz
Data Rate - Maximum
2Mbps
Modulation Or Protocol
802.15.4 Zigbee
Applications
General Purpose
Power - Output
3.5dBm
Sensitivity
-100dBm
Voltage - Supply
1.8 V ~ 3.6 V
Current - Receiving
12.5mA
Current - Transmitting
14.5mA
Data Interface
PCB, Surface Mount
Memory Size
128kB Flash, 4kB EEPROM, 16kB RAM
Antenna Connector
PCB, Surface Mount
Operating Temperature
-40°C ~ 85°C
Package / Case
64-VFQFN, Exposed Pad
Rf Ic Case Style
QFN
No. Of Pins
64
Supply Voltage Range
1.8V To 3.6V
Operating Temperature Range
-40°C To +85°C
Svhc
No SVHC (15-Dec-2010)
Rohs Compliant
Yes
Processor Series
ATMEGA128x
Core
AVR8
Data Bus Width
8 bit
Program Memory Type
Flash
Program Memory Size
128 KB
Data Ram Size
16 KB
Interface Type
JTAG
Maximum Clock Frequency
16 MHz
Number Of Programmable I/os
38
Number Of Timers
6
Operating Supply Voltage
1.8 V to 3.6 V
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
3rd Party Development Tools
EWAVR, EWAVR-BL
Development Tools By Supplier
ATAVR128RFA1-EK1
Lead Free Status / RoHS Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATMEGA128RFA1-ZU
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Part Number:
ATMEGA128RFA1-ZUR
Manufacturer:
ON
Quantity:
56 000
AVR USART vs. AVR
UART – Compatibility
Clock Generation
172
ATmega128
The USART is fully compatible with the AVR UART regarding:
However, the receive buffering has two improvements that will affect the compatibility in some
special cases:
The following control bits have changed name, but have same functionality and register location:
The clock generation logic generates the base clock for the transmitter and receiver. The
USART supports four modes of clock operation: Normal Asynchronous, Double Speed Asyn-
chronous, Master Synchronous, and Slave Synchronous mode. The UMSEL bit in USART
Control and Status Register C (UCSRC) selects between asynchronous and synchronous oper-
ation. Double speed (Asynchronous mode only) is controlled by the U2X found in the UCSRA
Register. When using Synchronous mode (UMSEL = 1), the Data Direction Register for the XCK
pin (DDR_XCK) controls whether the clock source is internal (Master mode) or external (Slave
mode). The XCK pin is only active when using Synchronous mode.
Figure 80
Figure 80. Clock Generation Logic, Block Diagram
Signal description:
Bit locations inside all USART registers
Baud Rate Generation
Transmitter Operation
Transmit Buffer Functionality
Receiver Operation
A second buffer register has been added. The two buffer registers operate as a circular FIFO
buffer. Therefore the UDR must only be read once for each incoming data! More important is
the fact that the error flags (FE and DOR) and the ninth data bit (RXB8) are buffered with the
data in the receive buffer. Therefore the status bits must always be read before the UDR
Register is read. Otherwise the error status will be lost since the buffer state is lost.
The receiver Shift Register can now act as a third buffer level. This is done by allowing the
received data to remain in the serial Shift Register (see
full, until a new start bit is detected. The USART is therefore more resistant to Data OverRun
(DOR) error conditions.
CHR9 is changed to UCSZ2
OR is changed to DOR
shows a block diagram of the clock generation logic.
DDR_XCK
XCK
Pin
xcko
xcki
OSC
Down-Counter
Prescaling
Register
UBRR
Sync
UBRR+1
fosc
Detector
UCPOL
Edge
/ 2
/ 4
Figure
/ 2
79) if the buffer registers are
DDR_XCK
U2X
0
1
0
1
0
1
1
0
UMSEL
2467V–AVR–02/11
txclk
rxclk

Related parts for ATMEGA128RFA1-ZU