ATMEGA1284PR231-AU Atmel, ATMEGA1284PR231-AU Datasheet - Page 283

BUNDLE ATMEGA1284P/RF231 TQFP

ATMEGA1284PR231-AU

Manufacturer Part Number
ATMEGA1284PR231-AU
Description
BUNDLE ATMEGA1284P/RF231 TQFP
Manufacturer
Atmel
Datasheet

Specifications of ATMEGA1284PR231-AU

Frequency
2.4GHz
Modulation Or Protocol
802.15.4 Zigbee, 6LoWPAN, RF4CE, SP100, WirelessHART™, ISM
Data Interface
PCB, Surface Mount
Memory Size
128kB Flash, 4kB EEPROM, 16kB RAM
Antenna Connector
PCB, Surface Mount
Package / Case
44-TQFP, 44-VQFP
Processor Series
ATMEGA128x
Core
AVR8
Data Bus Width
8 bit
Program Memory Type
Flash
Program Memory Size
128 KB
Data Ram Size
16 KB
Development Tools By Supplier
ATAVRRZ541, ATAVRRAVEN, ATAVRRZUSBSTICK, ATAVRISP2, ATAVRRZ201
For Use With
ATSTK600 - DEV KIT FOR AVR/AVR32
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Voltage - Supply
-
Power - Output
-
Operating Temperature
-
Applications
-
Sensitivity
-
Data Rate - Maximum
-
Current - Transmitting
-
Current - Receiving
-
Lead Free Status / Rohs Status
 Details
24.8.4
24.8.5
24.8.6
24.8.7
24.8.8
8059D–AVR–11/09
Using the SPM Interrupt
Consideration While Updating BLS
Prevent Reading the RWW Section During Self-Programming
Setting the Boot Loader Lock Bits by SPM
EEPROM Write Prevents Writing to SPMCSR
The page address must be written to PCPAGE. Other bits in the Z-pointer must be written to
zero during this operation.
• Page Write to the RWW section: The NRWW section can be read during the Page Write.
• Page Write to the NRWW section: The CPU is halted during the operation.
If the SPM interrupt is enabled, the SPM interrupt will generate a constant interrupt when the
SPMEN bit in SPMCSR is cleared. This means that the interrupt can be used instead of polling
the SPMCSR Register in software. When using the SPM interrupt, the Interrupt Vectors should
be moved to the BLS section to avoid that an interrupt is accessing the RWW section when it is
blocked for reading. How to move the interrupts is described in
Special care must be taken if the user allows the Boot Loader section to be updated by leaving
Boot Lock bit11 unprogrammed. An accidental write to the Boot Loader itself can corrupt the
entire Boot Loader, and further software updates might be impossible. If it is not necessary to
change the Boot Loader software itself, it is recommended to program the Boot Lock bit11 to
protect the Boot Loader software from any internal software changes.
During Self-Programming (either Page Erase or Page Write), the RWW section is always
blocked for reading. The user software itself must prevent that this section is addressed during
the self programming operation. The RWWSB in the SPMCSR will be set as long as the RWW
section is busy. During Self-Programming the Interrupt Vector table should be moved to the BLS
as described in
the RWW section after the programming is completed, the user software must clear the
RWWSB by writing the RWWSRE. See
page 286
To set the Boot Loader Lock bits and general lock bits, write the desired data to R0, write
“X0001001” to SPMCSR and execute SPM within four clock cycles after writing SPMCSR.
See
Flash access.
If bits 5..0 in R0 are cleared (zero), the corresponding Boot Lock bit will be programmed if an
SPM instruction is executed within four cycles after BLBSET and SPMEN are set in SPMCSR.
The Z-pointer is don’t care during this operation, but for future compatibility it is recommended to
load the Z-pointer with 0x0001 (same as used for reading the lO
is also recommended to set bits 7 and 6 in R0 to “1” when writing the Lock bits. When program-
ming the Lock bits the entire Flash can be read during the operation.
Note that an EEPROM write operation will block all software programming to Flash. Reading the
Fuses and Lock bits from software will also be prevented during the EEPROM write operation. It
Bit
R0
Table 24-2
for an example.
”Interrupts” on page
and
7
1
Table 24-3
6
1
for how the different settings of the Boot Loader bits affect the
BLB12
5
59, or the interrupts must be disabled. Before addressing
”Simple Assembly Code Example for a Boot Loader” on
BLB11
4
BLB02
3
BLB01
”Interrupts” on page
2
ck
bits). For future compatibility it
ATmega1284P
LB2
1
LB1
0
59.
283

Related parts for ATMEGA1284PR231-AU