TMP86FS28DFG(JZ) Toshiba, TMP86FS28DFG(JZ) Datasheet - Page 26

IC MCU 8BIT FLASH 60KB 80-LQFP

TMP86FS28DFG(JZ)

Manufacturer Part Number
TMP86FS28DFG(JZ)
Description
IC MCU 8BIT FLASH 60KB 80-LQFP
Manufacturer
Toshiba
Series
TLCS-870/Cr
Datasheet

Specifications of TMP86FS28DFG(JZ)

Core Processor
870/C
Core Size
8-Bit
Speed
16MHz
Connectivity
SIO, UART/USART
Peripherals
LCD, PWM, WDT
Number Of I /o
62
Program Memory Size
60KB (60K x 8)
Program Memory Type
FLASH
Ram Size
2K x 8
Voltage - Supply (vcc/vdd)
2.7 V ~ 5.5 V
Data Converters
A/D 8x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
80-LQFP
Processor Series
TLCS-870
Core
870/C
Data Bus Width
8 bit
Data Ram Size
2 KB
Interface Type
SIO, UART
Maximum Clock Frequency
16 MHz
Number Of Programmable I/os
62
Number Of Timers
6
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
Development Tools By Supplier
BM1040R0A, BMP86A100010A, BMP86A100010B, BMP86A200010B, BMP86A200020A, BMP86A300010A, BMP86A300020A, BMP86A300030A, SW89CN0-ZCC, SW00MN0-ZCC
Minimum Operating Temperature
- 40 C
On-chip Adc
10 bit, 8 Channel
For Use With
BM1401W0A-G - FLASH WRITER ON-BOARD PROGRAMTMP89C900XBG - EMULATION CHIP TMP89F LQFP
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Eeprom Size
-
Lead Free Status / Rohs Status
 Details
Other names
TMP86FS28DFGJZ

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
TMP86FS28DFG(JZ)
Manufacturer:
Toshiba
Quantity:
10 000
2.2 System Clock Controller
2.2.3.2
P22 (XTOUT) pins cannot be used as input/output ports. The main system clock is obtained from the
high-frequency clock in NORMAL2 and IDLE2 modes, and is obtained from the low-frequency clock in
SLOW and SLEEP modes. The machine cycle time is 4/fc [s] in the NORMAL2 and IDLE2 modes, and
4/fs [s] (122 µs at fs = 32.768 kHz) in the SLOW and SLEEP modes.
frequency oscillator should be turned on at the start of a program.
(2)
(3)
Dual-clock mode
(1)
(2)
(3)
Both the high-frequency and low-frequency oscillation circuits are used in this mode. P21 (XTIN) and
The TLCS-870/C is placed in the signal-clock mode during reset. To use the dual-clock mode, the low-
halted; however on-chip peripherals remain active (Operate using the high-frequency clock).
mode by an interrupt request from the on-chip peripherals or external interrupt inputs. When the IMF
(Interrupt master enable flag) is “1” (Interrupt enable), the execution will resume with the acceptance
of the interrupt, and the operation will return to normal after the interrupt service is completed. When
the IMF is “0” (Interrupt disable), the execution will resume with the instruction which follows the
IDLE1 mode start instruction.
peripheral circuits other than TBT. Then, upon detecting the falling edge of the source clock selected
with TBTCR<TBTCK>, the timing generator starts feeding the clock to all peripheral circuits.
again. IDLE0 mode is entered and returned regardless of how TBTCR<TBTEN> is set. When IMF =
“1”, EF6 (TBT interrupt individual enable flag) = “1”, and TBTCR<TBTEN> = “1”, interrupt pro-
cessing is performed. When IDLE0 mode is entered while TBTCR<TBTEN> = “1”, the INTTBT
interrupt latch is set after returning to NORMAL1 mode.
using the high-frequency clock and/or low-frequency clock.
clock and the low-frequency clock are operated. As the SYSCR2<SYSCK> becomes "1", the hard-
ware changes into SLOW2 mode. As the SYSCR2<SYSCK> becomes “0”, the hardware changes
into NORMAL2 mode. As the SYSCR2<XEN> becomes “0”, the hardware changes into SLOW1
mode. Do not clear SYSCR2<XTEN> to “0” during SLOW2 mode.
quency clock. The CPU core and on-chip peripherals operate using the low-frequency clock.
IDLE1 mode
In this mode, the internal oscillation circuit remains active. The CPU and the watchdog timer are
IDLE1 mode is started by SYSCR2<IDLE> = "1", and IDLE1 mode is released to NORMAL1
IDLE0 mode
In this mode, all the circuit, except oscillator and the timer-base-timer, stops operation.
This mode is enabled by SYSCR2<TGHALT> = "1".
When IDLE0 mode starts, the CPU stops and the timing generator stops feeding the clock to the
When returned from IDLE0 mode, the CPU restarts operating, entering NORMAL1 mode back
NORMAL2 mode
In this mode, the CPU core operates with the high-frequency clock. On-chip peripherals operate
SLOW2 mode
In this mode, the CPU core operates with the low-frequency clock, while both the high-frequency
SLOW1 mode
This mode can be used to reduce power-consumption by turning off oscillation of the high-fre-
Page 14
TMP86FS28DFG

Related parts for TMP86FS28DFG(JZ)