MC68HC11E1CFN2 Freescale Semiconductor, MC68HC11E1CFN2 Datasheet - Page 130

no-image

MC68HC11E1CFN2

Manufacturer Part Number
MC68HC11E1CFN2
Description
IC MCU 512 EEPROM 2MHZ 52-PLCC
Manufacturer
Freescale Semiconductor
Series
HC11r
Datasheet

Specifications of MC68HC11E1CFN2

Core Processor
HC11
Core Size
8-Bit
Speed
2MHz
Connectivity
SCI, SPI
Peripherals
POR, WDT
Number Of I /o
38
Program Memory Type
ROMless
Eeprom Size
512 x 8
Ram Size
512 x 8
Voltage - Supply (vcc/vdd)
4.5 V ~ 5.5 V
Data Converters
A/D 8x8b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
52-PLCC
Lead Free Status / RoHS Status
Contains lead / RoHS non-compliant
Program Memory Size
-

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
MC68HC11E1CFN2
Manufacturer:
FENGHUA
Quantity:
460 000
Part Number:
MC68HC11E1CFN2
Manufacturer:
MOT
Quantity:
2 600
Part Number:
MC68HC11E1CFN2
Quantity:
5 510
Part Number:
MC68HC11E1CFN2
Manufacturer:
MOTOROLA
Quantity:
9
Part Number:
MC68HC11E1CFN2
Manufacturer:
Freescale Semiconductor
Quantity:
10 000
Part Number:
MC68HC11E1CFN2
Manufacturer:
MOTOROLA/摩托罗拉
Quantity:
20 000
Part Number:
MC68HC11E1CFN2R2
Manufacturer:
Freescale Semiconductor
Quantity:
10 000
Serial Communications Interface (SCI)
7.9 Receiver Flags
Data Sheet
130
these flags is automatic. Functions that are normally performed in response to the
status flags also satisfy the conditions of the clearing sequence.
TDRE and TC flags are normally set when the transmitter is first enabled (TE set
to 1). The TDRE flag indicates there is room in the transmit queue to store another
data character in the TDR. The TIE bit is the local interrupt mask for TDRE. When
TIE is 0, TDRE must be polled. When TIE and TDRE are 1, an interrupt is
requested.
The TC flag indicates the transmitter has completed the queue. The TCIE bit is the
local interrupt mask for TC. When TCIE is 0, TC must be polled. When TCIE is 1
and TC is 1, an interrupt is requested.
Writing a 0 to TE requests that the transmitter stop when it can. The transmitter
completes any transmission in progress before actually shutting down. Only an
MCU reset can cause the transmitter to stop and shut down immediately. If TE is
written to 0 when the transmitter is already idle, the pin reverts to its
general-purpose I/O function (synchronized to the bit-rate clock). If anything is
being transmitted when TE is written to 0, that character is completed before the
pin reverts to general-purpose I/O, but any other characters waiting in the transmit
queue are lost. The TC and TDRE flags are set at the completion of this last
character, even though TE has been disabled.
The SCI receiver has five status flags, three of which can generate interrupt
requests. The status flags are set by the SCI logic in response to specific conditions
in the receiver. These flags can be read (polled) at any time by software. Refer to
Figure
When an overrun takes place, the new character is lost, and the character that was
in its way in the parallel RDR is undisturbed. RDRF is set when a character has
been received and transferred into the parallel RDR. The OR flag is set instead of
RDRF if overrun occurs. A new character is ready to be transferred into RDR
before a previous character is read from RDR.
The NF and FE flags provide additional information about the character in the RDR,
but do not generate interrupt requests.
The last receiver status flag and interrupt source come from the IDLE flag. The RxD
line is idle if it has constantly been at logic 1 for a full character time. The IDLE flag
is set only after the RxD line has been busy and becomes idle, which prevents
repeated interrupts for the whole time RxD remains idle.
Freescale Semiconductor, Inc.
7-10, which shows SCI interrupt arbitration.
For More Information On This Product,
Serial Communications Interface (SCI)
Go to: www.freescale.com
M68HC11E Family — Rev. 5
MOTOROLA

Related parts for MC68HC11E1CFN2